# | Line 1 | Line 1 | |
---|---|---|
1 | #include <cstdlib> | |
2 | #include <cstring> | |
3 | + | #include <cmath> |
4 | ||
5 | + | #include <iostream> |
6 | + | using namespace std; |
7 | ||
8 | #include "SimInfo.hpp" | |
9 | #define __C | |
# | Line 9 | Line 12 | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #ifdef IS_MPI |
16 | + | #include "mpiSimulation.hpp" |
17 | + | #endif |
18 | + | |
19 | + | inline double roundMe( double x ){ |
20 | + | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
21 | + | } |
22 | + | |
23 | + | |
24 | SimInfo* currentInfo; | |
25 | ||
26 | SimInfo::SimInfo(){ | |
# | Line 22 | Line 34 | SimInfo::SimInfo(){ | |
34 | setTemp = 0; | |
35 | thermalTime = 0.0; | |
36 | rCut = 0.0; | |
37 | + | ecr = 0.0; |
38 | + | est = 0.0; |
39 | ||
40 | usePBC = 0; | |
41 | useLJ = 0; | |
# | Line 35 | Line 49 | void SimInfo::setBox(double newBox[3]) { | |
49 | } | |
50 | ||
51 | void SimInfo::setBox(double newBox[3]) { | |
52 | < | double smallestBox, maxCutoff; |
53 | < | int status; |
54 | < | box_x = newBox[0]; |
41 | < | box_y = newBox[1]; |
42 | < | box_z = newBox[2]; |
43 | < | setFortranBoxSize(newBox); |
52 | > | |
53 | > | int i, j; |
54 | > | double tempMat[3][3]; |
55 | ||
56 | < | smallestBox = box_x; |
57 | < | if (box_y < smallestBox) smallestBox = box_y; |
47 | < | if (box_z < smallestBox) smallestBox = box_z; |
56 | > | for(i=0; i<3; i++) |
57 | > | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
58 | ||
59 | < | maxCutoff = smallestBox / 2.0; |
59 | > | tempMat[0][0] = newBox[0]; |
60 | > | tempMat[1][1] = newBox[1]; |
61 | > | tempMat[2][2] = newBox[2]; |
62 | ||
63 | + | setBoxM( tempMat ); |
64 | + | |
65 | + | } |
66 | + | |
67 | + | void SimInfo::setBoxM( double theBox[3][3] ){ |
68 | + | |
69 | + | int i, j, status; |
70 | + | double smallestBoxL, maxCutoff; |
71 | + | double FortranHmat[9]; // to preserve compatibility with Fortran the |
72 | + | // ordering in the array is as follows: |
73 | + | // [ 0 3 6 ] |
74 | + | // [ 1 4 7 ] |
75 | + | // [ 2 5 8 ] |
76 | + | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
77 | + | |
78 | + | |
79 | + | for(i=0; i < 3; i++) |
80 | + | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
81 | + | |
82 | + | // cerr |
83 | + | // << "setting Hmat ->\n" |
84 | + | // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
85 | + | // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
86 | + | // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
87 | + | |
88 | + | calcBoxL(); |
89 | + | calcHmatInv(); |
90 | + | |
91 | + | for(i=0; i < 3; i++) { |
92 | + | for (j=0; j < 3; j++) { |
93 | + | FortranHmat[3*j + i] = Hmat[i][j]; |
94 | + | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
95 | + | } |
96 | + | } |
97 | + | |
98 | + | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
99 | + | |
100 | + | smallestBoxL = boxLx; |
101 | + | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
102 | + | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
103 | + | |
104 | + | maxCutoff = smallestBoxL / 2.0; |
105 | + | |
106 | if (rList > maxCutoff) { | |
107 | sprintf( painCave.errMsg, | |
108 | "New Box size is forcing neighborlist radius down to %lf\n", | |
# | Line 69 | Line 124 | void SimInfo::setBox(double newBox[3]) { | |
124 | refreshSim(); | |
125 | } | |
126 | ||
127 | < | if (rCut > maxCutoff) { |
127 | > | if( ecr > maxCutoff ){ |
128 | > | |
129 | sprintf( painCave.errMsg, | |
130 | < | "New Box size is forcing cutoff radius down to %lf\n", |
130 | > | "New Box size is forcing electrostatic cutoff radius " |
131 | > | "down to %lf\n", |
132 | maxCutoff ); | |
133 | painCave.isFatal = 0; | |
134 | simError(); | |
135 | ||
136 | < | status = 0; |
137 | < | LJ_new_rcut(&rCut, &status); |
138 | < | if (status != 0) { |
139 | < | sprintf( painCave.errMsg, |
140 | < | "Error in recomputing LJ shifts based on new rcut\n"); |
141 | < | painCave.isFatal = 1; |
142 | < | simError(); |
136 | > | ecr = maxCutoff; |
137 | > | est = 0.05 * ecr; |
138 | > | |
139 | > | refreshSim(); |
140 | > | } |
141 | > | |
142 | > | } |
143 | > | |
144 | > | |
145 | > | void SimInfo::getBoxM (double theBox[3][3]) { |
146 | > | |
147 | > | int i, j; |
148 | > | for(i=0; i<3; i++) |
149 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
150 | > | } |
151 | > | |
152 | > | |
153 | > | void SimInfo::scaleBox(double scale) { |
154 | > | double theBox[3][3]; |
155 | > | int i, j; |
156 | > | |
157 | > | // cerr << "Scaling box by " << scale << "\n"; |
158 | > | |
159 | > | for(i=0; i<3; i++) |
160 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
161 | > | |
162 | > | setBoxM(theBox); |
163 | > | |
164 | > | } |
165 | > | |
166 | > | void SimInfo::calcHmatInv( void ) { |
167 | > | |
168 | > | int i,j; |
169 | > | double smallDiag; |
170 | > | double tol; |
171 | > | double sanity[3][3]; |
172 | > | |
173 | > | invertMat3( Hmat, HmatInv ); |
174 | > | |
175 | > | // Check the inverse to make sure it is sane: |
176 | > | |
177 | > | matMul3( Hmat, HmatInv, sanity ); |
178 | > | |
179 | > | // check to see if Hmat is orthorhombic |
180 | > | |
181 | > | smallDiag = Hmat[0][0]; |
182 | > | if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
183 | > | if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
184 | > | tol = smallDiag * 1E-6; |
185 | > | |
186 | > | orthoRhombic = 1; |
187 | > | |
188 | > | for (i = 0; i < 3; i++ ) { |
189 | > | for (j = 0 ; j < 3; j++) { |
190 | > | if (i != j) { |
191 | > | if (orthoRhombic) { |
192 | > | if (Hmat[i][j] >= tol) orthoRhombic = 0; |
193 | > | } |
194 | > | } |
195 | } | |
196 | } | |
197 | } | |
198 | ||
199 | < | void SimInfo::getBox(double theBox[3]) { |
200 | < | theBox[0] = box_x; |
201 | < | theBox[1] = box_y; |
202 | < | theBox[2] = box_z; |
199 | > | double SimInfo::matDet3(double a[3][3]) { |
200 | > | int i, j, k; |
201 | > | double determinant; |
202 | > | |
203 | > | determinant = 0.0; |
204 | > | |
205 | > | for(i = 0; i < 3; i++) { |
206 | > | j = (i+1)%3; |
207 | > | k = (i+2)%3; |
208 | > | |
209 | > | determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
210 | > | } |
211 | > | |
212 | > | return determinant; |
213 | } | |
214 | < | |
214 | > | |
215 | > | void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
216 | > | |
217 | > | int i, j, k, l, m, n; |
218 | > | double determinant; |
219 | > | |
220 | > | determinant = matDet3( a ); |
221 | > | |
222 | > | if (determinant == 0.0) { |
223 | > | sprintf( painCave.errMsg, |
224 | > | "Can't invert a matrix with a zero determinant!\n"); |
225 | > | painCave.isFatal = 1; |
226 | > | simError(); |
227 | > | } |
228 | > | |
229 | > | for (i=0; i < 3; i++) { |
230 | > | j = (i+1)%3; |
231 | > | k = (i+2)%3; |
232 | > | for(l = 0; l < 3; l++) { |
233 | > | m = (l+1)%3; |
234 | > | n = (l+2)%3; |
235 | > | |
236 | > | b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
237 | > | } |
238 | > | } |
239 | > | } |
240 | > | |
241 | > | void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
242 | > | double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
243 | > | |
244 | > | r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
245 | > | r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
246 | > | r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
247 | > | |
248 | > | r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
249 | > | r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
250 | > | r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
251 | > | |
252 | > | r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
253 | > | r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
254 | > | r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
255 | > | |
256 | > | c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
257 | > | c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
258 | > | c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
259 | > | } |
260 | > | |
261 | > | void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
262 | > | double a0, a1, a2; |
263 | > | |
264 | > | a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
265 | > | |
266 | > | outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
267 | > | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
268 | > | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
269 | > | } |
270 | > | |
271 | > | void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
272 | > | double temp[3][3]; |
273 | > | int i, j; |
274 | > | |
275 | > | for (i = 0; i < 3; i++) { |
276 | > | for (j = 0; j < 3; j++) { |
277 | > | temp[j][i] = in[i][j]; |
278 | > | } |
279 | > | } |
280 | > | for (i = 0; i < 3; i++) { |
281 | > | for (j = 0; j < 3; j++) { |
282 | > | out[i][j] = temp[i][j]; |
283 | > | } |
284 | > | } |
285 | > | } |
286 | > | |
287 | > | void SimInfo::printMat3(double A[3][3] ){ |
288 | > | |
289 | > | std::cerr |
290 | > | << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
291 | > | << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
292 | > | << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
293 | > | } |
294 | > | |
295 | > | void SimInfo::printMat9(double A[9] ){ |
296 | > | |
297 | > | std::cerr |
298 | > | << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
299 | > | << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
300 | > | << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
301 | > | } |
302 | > | |
303 | > | void SimInfo::calcBoxL( void ){ |
304 | > | |
305 | > | double dx, dy, dz, dsq; |
306 | > | int i; |
307 | > | |
308 | > | // boxVol = Determinant of Hmat |
309 | > | |
310 | > | boxVol = matDet3( Hmat ); |
311 | > | |
312 | > | // boxLx |
313 | > | |
314 | > | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
315 | > | dsq = dx*dx + dy*dy + dz*dz; |
316 | > | boxLx = sqrt( dsq ); |
317 | > | |
318 | > | // boxLy |
319 | > | |
320 | > | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
321 | > | dsq = dx*dx + dy*dy + dz*dz; |
322 | > | boxLy = sqrt( dsq ); |
323 | > | |
324 | > | // boxLz |
325 | > | |
326 | > | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
327 | > | dsq = dx*dx + dy*dy + dz*dz; |
328 | > | boxLz = sqrt( dsq ); |
329 | > | |
330 | > | } |
331 | > | |
332 | > | |
333 | > | void SimInfo::wrapVector( double thePos[3] ){ |
334 | > | |
335 | > | int i, j, k; |
336 | > | double scaled[3]; |
337 | > | |
338 | > | if( !orthoRhombic ){ |
339 | > | // calc the scaled coordinates. |
340 | > | |
341 | > | |
342 | > | matVecMul3(HmatInv, thePos, scaled); |
343 | > | |
344 | > | for(i=0; i<3; i++) |
345 | > | scaled[i] -= roundMe(scaled[i]); |
346 | > | |
347 | > | // calc the wrapped real coordinates from the wrapped scaled coordinates |
348 | > | |
349 | > | matVecMul3(Hmat, scaled, thePos); |
350 | > | |
351 | > | } |
352 | > | else{ |
353 | > | // calc the scaled coordinates. |
354 | > | |
355 | > | for(i=0; i<3; i++) |
356 | > | scaled[i] = thePos[i]*HmatInv[i][i]; |
357 | > | |
358 | > | // wrap the scaled coordinates |
359 | > | |
360 | > | for(i=0; i<3; i++) |
361 | > | scaled[i] -= roundMe(scaled[i]); |
362 | > | |
363 | > | // calc the wrapped real coordinates from the wrapped scaled coordinates |
364 | > | |
365 | > | for(i=0; i<3; i++) |
366 | > | thePos[i] = scaled[i]*Hmat[i][i]; |
367 | > | } |
368 | > | |
369 | > | } |
370 | > | |
371 | > | |
372 | int SimInfo::getNDF(){ | |
373 | int ndf_local, ndf; | |
374 | ||
# | Line 128 | Line 404 | void SimInfo::refreshSim(){ | |
404 | ||
405 | simtype fInfo; | |
406 | int isError; | |
407 | + | int n_global; |
408 | int* excl; | |
409 | ||
410 | fInfo.rrf = 0.0; | |
411 | fInfo.rt = 0.0; | |
412 | fInfo.dielect = 0.0; | |
413 | ||
137 | – | fInfo.box[0] = box_x; |
138 | – | fInfo.box[1] = box_y; |
139 | – | fInfo.box[2] = box_z; |
140 | – | |
414 | fInfo.rlist = rList; | |
415 | fInfo.rcut = rCut; | |
416 | ||
# | Line 161 | Line 434 | void SimInfo::refreshSim(){ | |
434 | ||
435 | excl = Exclude::getArray(); | |
436 | ||
437 | + | #ifdef IS_MPI |
438 | + | n_global = mpiSim->getTotAtoms(); |
439 | + | #else |
440 | + | n_global = n_atoms; |
441 | + | #endif |
442 | + | |
443 | isError = 0; | |
444 | ||
445 | < | // fInfo; |
446 | < | // n_atoms; |
447 | < | // identArray; |
169 | < | // n_exclude; |
170 | < | // excludes; |
171 | < | // nGlobalExcludes; |
172 | < | // globalExcludes; |
173 | < | // isError; |
445 | > | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
446 | > | &nGlobalExcludes, globalExcludes, molMembershipArray, |
447 | > | &isError ); |
448 | ||
175 | – | setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excl, |
176 | – | &nGlobalExcludes, globalExcludes, &isError ); |
177 | – | |
449 | if( isError ){ | |
450 | ||
451 | sprintf( painCave.errMsg, |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |