# | Line 34 | Line 34 | SimInfo::SimInfo(){ | |
---|---|---|
34 | setTemp = 0; | |
35 | thermalTime = 0.0; | |
36 | rCut = 0.0; | |
37 | + | ecr = 0.0; |
38 | + | est = 0.0; |
39 | ||
40 | usePBC = 0; | |
41 | useLJ = 0; | |
# | Line 77 | Line 79 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
79 | for(i=0; i < 3; i++) | |
80 | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | |
81 | ||
82 | < | cerr |
83 | < | << "setting Hmat ->\n" |
84 | < | << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
85 | < | << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
86 | < | << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
82 | > | // cerr |
83 | > | // << "setting Hmat ->\n" |
84 | > | // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
85 | > | // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
86 | > | // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
87 | ||
88 | calcBoxL(); | |
89 | calcHmatInv(); | |
# | Line 93 | Line 95 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
95 | } | |
96 | } | |
97 | ||
98 | < | setFortranBoxSize(FortranHmat, FortranHmatI, &orthoRhombic); |
98 | > | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
99 | ||
100 | < | smallestBoxL = boxLx; |
101 | < | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
102 | < | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
100 | > | smallestBoxL = boxL[0]; |
101 | > | if (boxL[1] < smallestBoxL) smallestBoxL = boxL[1]; |
102 | > | if (boxL[2] > smallestBoxL) smallestBoxL = boxL[2]; |
103 | ||
104 | maxCutoff = smallestBoxL / 2.0; | |
105 | ||
# | Line 107 | Line 109 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
109 | maxCutoff ); | |
110 | painCave.isFatal = 0; | |
111 | simError(); | |
110 | – | |
112 | rList = maxCutoff; | |
113 | ||
114 | < | sprintf( painCave.errMsg, |
114 | < | "New Box size is forcing cutoff radius down to %lf\n", |
115 | < | maxCutoff - 1.0 ); |
116 | < | painCave.isFatal = 0; |
117 | < | simError(); |
118 | < | |
119 | < | rCut = rList - 1.0; |
120 | < | |
121 | < | // list radius changed so we have to refresh the simulation structure. |
122 | < | refreshSim(); |
123 | < | } |
124 | < | |
125 | < | if (rCut > maxCutoff) { |
126 | < | sprintf( painCave.errMsg, |
127 | < | "New Box size is forcing cutoff radius down to %lf\n", |
128 | < | maxCutoff ); |
129 | < | painCave.isFatal = 0; |
130 | < | simError(); |
131 | < | |
132 | < | status = 0; |
133 | < | LJ_new_rcut(&rCut, &status); |
134 | < | if (status != 0) { |
114 | > | if (rCut > (rList - 1.0)) { |
115 | sprintf( painCave.errMsg, | |
116 | < | "Error in recomputing LJ shifts based on new rcut\n"); |
117 | < | painCave.isFatal = 1; |
116 | > | "New Box size is forcing LJ cutoff radius down to %lf\n", |
117 | > | rList - 1.0 ); |
118 | > | painCave.isFatal = 0; |
119 | simError(); | |
120 | + | rCut = rList - 1.0; |
121 | } | |
122 | < | } |
122 | > | |
123 | > | if( ecr > (rList - 1.0) ){ |
124 | > | sprintf( painCave.errMsg, |
125 | > | "New Box size is forcing electrostaticCutoffRadius " |
126 | > | "down to %lf\n" |
127 | > | "electrostaticSkinThickness is now %lf\n", |
128 | > | rList - 1.0, 0.05*(rList-1.0) ); |
129 | > | painCave.isFatal = 0; |
130 | > | simError(); |
131 | > | ecr = maxCutoff; |
132 | > | est = 0.05 * ecr; |
133 | > | } |
134 | > | |
135 | > | // At least one of the radii changed, so we need a refresh: |
136 | > | refreshSim(); |
137 | > | } |
138 | } | |
139 | ||
140 | ||
# | Line 153 | Line 150 | void SimInfo::scaleBox(double scale) { | |
150 | double theBox[3][3]; | |
151 | int i, j; | |
152 | ||
153 | < | cerr << "Scaling box by " << scale << "\n"; |
153 | > | // cerr << "Scaling box by " << scale << "\n"; |
154 | ||
155 | for(i=0; i<3; i++) | |
156 | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; | |
# | Line 163 | Line 160 | void SimInfo::calcHmatInv( void ) { | |
160 | } | |
161 | ||
162 | void SimInfo::calcHmatInv( void ) { | |
163 | < | |
163 | > | |
164 | > | int i,j; |
165 | double smallDiag; | |
166 | double tol; | |
167 | double sanity[3][3]; | |
# | Line 173 | Line 171 | void SimInfo::calcHmatInv( void ) { | |
171 | // Check the inverse to make sure it is sane: | |
172 | ||
173 | matMul3( Hmat, HmatInv, sanity ); | |
176 | – | |
177 | – | cerr << "sanity => \n" |
178 | – | << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
179 | – | << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
180 | – | << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
181 | – | << "\n"; |
174 | ||
175 | // check to see if Hmat is orthorhombic | |
176 | ||
# | Line 271 | Line 263 | void SimInfo::matVecMul3(double m[3][3], double inVec[ | |
263 | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; | |
264 | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; | |
265 | } | |
266 | + | |
267 | + | void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
268 | + | double temp[3][3]; |
269 | + | int i, j; |
270 | + | |
271 | + | for (i = 0; i < 3; i++) { |
272 | + | for (j = 0; j < 3; j++) { |
273 | + | temp[j][i] = in[i][j]; |
274 | + | } |
275 | + | } |
276 | + | for (i = 0; i < 3; i++) { |
277 | + | for (j = 0; j < 3; j++) { |
278 | + | out[i][j] = temp[i][j]; |
279 | + | } |
280 | + | } |
281 | + | } |
282 | ||
283 | + | void SimInfo::printMat3(double A[3][3] ){ |
284 | + | |
285 | + | std::cerr |
286 | + | << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
287 | + | << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
288 | + | << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
289 | + | } |
290 | + | |
291 | + | void SimInfo::printMat9(double A[9] ){ |
292 | + | |
293 | + | std::cerr |
294 | + | << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
295 | + | << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
296 | + | << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
297 | + | } |
298 | + | |
299 | void SimInfo::calcBoxL( void ){ | |
300 | ||
301 | double dx, dy, dz, dsq; | |
# | Line 285 | Line 309 | void SimInfo::calcBoxL( void ){ | |
309 | ||
310 | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | |
311 | dsq = dx*dx + dy*dy + dz*dz; | |
312 | < | boxLx = sqrt( dsq ); |
312 | > | boxL[0] = sqrt( dsq ); |
313 | ||
314 | // boxLy | |
315 | ||
316 | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | |
317 | dsq = dx*dx + dy*dy + dz*dz; | |
318 | < | boxLy = sqrt( dsq ); |
318 | > | boxL[1] = sqrt( dsq ); |
319 | ||
320 | // boxLz | |
321 | ||
322 | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | |
323 | dsq = dx*dx + dy*dy + dz*dz; | |
324 | < | boxLz = sqrt( dsq ); |
324 | > | boxL[2] = sqrt( dsq ); |
325 | ||
326 | } | |
327 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |