# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <cstdlib> |
2 | < | #include <cstring> |
3 | < | #include <cmath> |
1 | > | #include <stdlib.h> |
2 | > | #include <string.h> |
3 | > | #include <math.h> |
4 | ||
5 | #include <iostream> | |
6 | using namespace std; | |
# | Line 12 | Line 12 | using namespace std; | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #include "MatVec3.h" |
16 | + | |
17 | #ifdef IS_MPI | |
18 | #include "mpiSimulation.hpp" | |
19 | #endif | |
# | Line 20 | Line 22 | inline double roundMe( double x ){ | |
22 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | |
23 | } | |
24 | ||
25 | + | inline double min( double a, double b ){ |
26 | + | return (a < b ) ? a : b; |
27 | + | } |
28 | ||
29 | SimInfo* currentInfo; | |
30 | ||
31 | SimInfo::SimInfo(){ | |
32 | < | excludes = NULL; |
32 | > | |
33 | n_constraints = 0; | |
34 | + | nZconstraints = 0; |
35 | n_oriented = 0; | |
36 | n_dipoles = 0; | |
37 | ndf = 0; | |
38 | ndfRaw = 0; | |
39 | + | nZconstraints = 0; |
40 | the_integrator = NULL; | |
41 | setTemp = 0; | |
42 | thermalTime = 0.0; | |
43 | + | currentTime = 0.0; |
44 | rCut = 0.0; | |
45 | + | ecr = 0.0; |
46 | + | est = 0.0; |
47 | ||
48 | + | haveRcut = 0; |
49 | + | haveEcr = 0; |
50 | + | boxIsInit = 0; |
51 | + | |
52 | + | resetTime = 1e99; |
53 | + | |
54 | + | orthoRhombic = 0; |
55 | + | orthoTolerance = 1E-6; |
56 | + | useInitXSstate = true; |
57 | + | |
58 | usePBC = 0; | |
59 | useLJ = 0; | |
60 | useSticky = 0; | |
61 | < | useDipole = 0; |
61 | > | useCharges = 0; |
62 | > | useDipoles = 0; |
63 | useReactionField = 0; | |
64 | useGB = 0; | |
65 | useEAM = 0; | |
66 | + | useMolecularCutoffs = 0; |
67 | ||
68 | + | excludes = Exclude::Instance(); |
69 | + | |
70 | + | myConfiguration = new SimState(); |
71 | + | |
72 | + | has_minimizer = false; |
73 | + | the_minimizer =NULL; |
74 | + | |
75 | wrapMeSimInfo( this ); | |
76 | } | |
77 | ||
78 | + | |
79 | + | SimInfo::~SimInfo(){ |
80 | + | |
81 | + | delete myConfiguration; |
82 | + | |
83 | + | map<string, GenericData*>::iterator i; |
84 | + | |
85 | + | for(i = properties.begin(); i != properties.end(); i++) |
86 | + | delete (*i).second; |
87 | + | |
88 | + | } |
89 | + | |
90 | void SimInfo::setBox(double newBox[3]) { | |
91 | ||
92 | < | int i; |
93 | < | double tempMat[9]; |
92 | > | int i, j; |
93 | > | double tempMat[3][3]; |
94 | ||
95 | < | for(i=0; i<9; i++) tempMat[i] = 0.0;; |
95 | > | for(i=0; i<3; i++) |
96 | > | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
97 | ||
98 | < | tempMat[0] = newBox[0]; |
99 | < | tempMat[4] = newBox[1]; |
100 | < | tempMat[8] = newBox[2]; |
98 | > | tempMat[0][0] = newBox[0]; |
99 | > | tempMat[1][1] = newBox[1]; |
100 | > | tempMat[2][2] = newBox[2]; |
101 | ||
102 | setBoxM( tempMat ); | |
103 | ||
104 | } | |
105 | ||
106 | < | void SimInfo::setBoxM( double theBox[9] ){ |
106 | > | void SimInfo::setBoxM( double theBox[3][3] ){ |
107 | ||
108 | < | int i, status; |
109 | < | double smallestBoxL, maxCutoff; |
108 | > | int i, j; |
109 | > | double FortranHmat[9]; // to preserve compatibility with Fortran the |
110 | > | // ordering in the array is as follows: |
111 | > | // [ 0 3 6 ] |
112 | > | // [ 1 4 7 ] |
113 | > | // [ 2 5 8 ] |
114 | > | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
115 | ||
116 | < | for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
116 | > | if( !boxIsInit ) boxIsInit = 1; |
117 | ||
118 | < | cerr |
119 | < | << "setting Hmat ->\n" |
120 | < | << "[ " << Hmat[0] << ", " << Hmat[3] << ", " << Hmat[6] << " ]\n" |
74 | < | << "[ " << Hmat[1] << ", " << Hmat[4] << ", " << Hmat[7] << " ]\n" |
75 | < | << "[ " << Hmat[2] << ", " << Hmat[5] << ", " << Hmat[8] << " ]\n"; |
76 | < | |
77 | < | calcHmatI(); |
118 | > | for(i=0; i < 3; i++) |
119 | > | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
120 | > | |
121 | calcBoxL(); | |
122 | + | calcHmatInv(); |
123 | ||
124 | < | |
125 | < | |
126 | < | setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
127 | < | |
84 | < | smallestBoxL = boxLx; |
85 | < | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
86 | < | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
87 | < | |
88 | < | maxCutoff = smallestBoxL / 2.0; |
89 | < | |
90 | < | if (rList > maxCutoff) { |
91 | < | sprintf( painCave.errMsg, |
92 | < | "New Box size is forcing neighborlist radius down to %lf\n", |
93 | < | maxCutoff ); |
94 | < | painCave.isFatal = 0; |
95 | < | simError(); |
96 | < | |
97 | < | rList = maxCutoff; |
98 | < | |
99 | < | sprintf( painCave.errMsg, |
100 | < | "New Box size is forcing cutoff radius down to %lf\n", |
101 | < | maxCutoff - 1.0 ); |
102 | < | painCave.isFatal = 0; |
103 | < | simError(); |
104 | < | |
105 | < | rCut = rList - 1.0; |
106 | < | |
107 | < | // list radius changed so we have to refresh the simulation structure. |
108 | < | refreshSim(); |
109 | < | } |
110 | < | |
111 | < | if (rCut > maxCutoff) { |
112 | < | sprintf( painCave.errMsg, |
113 | < | "New Box size is forcing cutoff radius down to %lf\n", |
114 | < | maxCutoff ); |
115 | < | painCave.isFatal = 0; |
116 | < | simError(); |
117 | < | |
118 | < | status = 0; |
119 | < | LJ_new_rcut(&rCut, &status); |
120 | < | if (status != 0) { |
121 | < | sprintf( painCave.errMsg, |
122 | < | "Error in recomputing LJ shifts based on new rcut\n"); |
123 | < | painCave.isFatal = 1; |
124 | < | simError(); |
124 | > | for(i=0; i < 3; i++) { |
125 | > | for (j=0; j < 3; j++) { |
126 | > | FortranHmat[3*j + i] = Hmat[i][j]; |
127 | > | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
128 | } | |
129 | } | |
130 | + | |
131 | + | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
132 | + | |
133 | } | |
134 | ||
135 | ||
136 | < | void SimInfo::getBoxM (double theBox[9]) { |
136 | > | void SimInfo::getBoxM (double theBox[3][3]) { |
137 | ||
138 | < | int i; |
139 | < | for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
138 | > | int i, j; |
139 | > | for(i=0; i<3; i++) |
140 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
141 | } | |
142 | ||
143 | ||
144 | void SimInfo::scaleBox(double scale) { | |
145 | < | double theBox[9]; |
146 | < | int i; |
145 | > | double theBox[3][3]; |
146 | > | int i, j; |
147 | ||
148 | < | cerr << "Scaling box by " << scale << "\n"; |
148 | > | // cerr << "Scaling box by " << scale << "\n"; |
149 | ||
150 | < | for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
150 | > | for(i=0; i<3; i++) |
151 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
152 | ||
153 | setBoxM(theBox); | |
154 | ||
155 | } | |
156 | ||
157 | < | void SimInfo::calcHmatI( void ) { |
158 | < | |
159 | < | double C[3][3]; |
160 | < | double detHmat; |
153 | < | int i, j, k; |
157 | > | void SimInfo::calcHmatInv( void ) { |
158 | > | |
159 | > | int oldOrtho; |
160 | > | int i,j; |
161 | double smallDiag; | |
162 | double tol; | |
163 | double sanity[3][3]; | |
164 | ||
165 | < | // calculate the adjunct of Hmat; |
165 | > | invertMat3( Hmat, HmatInv ); |
166 | ||
167 | < | C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
161 | < | C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
162 | < | C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
163 | < | |
164 | < | C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
165 | < | C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
166 | < | C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
167 | < | |
168 | < | C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
169 | < | C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
170 | < | C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
171 | < | |
172 | < | // calcutlate the determinant of Hmat |
167 | > | // check to see if Hmat is orthorhombic |
168 | ||
169 | < | detHmat = 0.0; |
175 | < | for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
169 | > | oldOrtho = orthoRhombic; |
170 | ||
171 | < | |
172 | < | // H^-1 = C^T / det(H) |
173 | < | |
174 | < | i=0; |
181 | < | for(j=0; j<3; j++){ |
182 | < | for(k=0; k<3; k++){ |
171 | > | smallDiag = fabs(Hmat[0][0]); |
172 | > | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
173 | > | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
174 | > | tol = smallDiag * orthoTolerance; |
175 | ||
176 | < | HmatI[i] = C[j][k] / detHmat; |
177 | < | i++; |
178 | < | } |
179 | < | } |
180 | < | |
181 | < | // sanity check |
182 | < | |
183 | < | for(i=0; i<3; i++){ |
192 | < | for(j=0; j<3; j++){ |
193 | < | |
194 | < | sanity[i][j] = 0.0; |
195 | < | for(k=0; k<3; k++){ |
196 | < | sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
176 | > | orthoRhombic = 1; |
177 | > | |
178 | > | for (i = 0; i < 3; i++ ) { |
179 | > | for (j = 0 ; j < 3; j++) { |
180 | > | if (i != j) { |
181 | > | if (orthoRhombic) { |
182 | > | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
183 | > | } |
184 | } | |
185 | } | |
186 | } | |
187 | ||
188 | < | cerr << "sanity => \n" |
202 | < | << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
203 | < | << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
204 | < | << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
205 | < | << "\n"; |
188 | > | if( oldOrtho != orthoRhombic ){ |
189 | ||
190 | < | |
191 | < | // check to see if Hmat is orthorhombic |
192 | < | |
193 | < | smallDiag = Hmat[0]; |
194 | < | if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
195 | < | if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
196 | < | tol = smallDiag * 1E-6; |
197 | < | |
198 | < | orthoRhombic = 1; |
216 | < | for(i=0; (i<9) && orthoRhombic; i++){ |
217 | < | |
218 | < | if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
219 | < | orthoRhombic = (Hmat[i] <= tol); |
190 | > | if( orthoRhombic ){ |
191 | > | sprintf( painCave.errMsg, |
192 | > | "OOPSE is switching from the default Non-Orthorhombic\n" |
193 | > | "\tto the faster Orthorhombic periodic boundary computations.\n" |
194 | > | "\tThis is usually a good thing, but if you wan't the\n" |
195 | > | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
196 | > | "\tvariable ( currently set to %G ) smaller.\n", |
197 | > | orthoTolerance); |
198 | > | simError(); |
199 | } | |
200 | + | else { |
201 | + | sprintf( painCave.errMsg, |
202 | + | "OOPSE is switching from the faster Orthorhombic to the more\n" |
203 | + | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
204 | + | "\tThis is usually because the box has deformed under\n" |
205 | + | "\tNPTf integration. If you wan't to live on the edge with\n" |
206 | + | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
207 | + | "\tvariable ( currently set to %G ) larger.\n", |
208 | + | orthoTolerance); |
209 | + | simError(); |
210 | + | } |
211 | } | |
222 | – | |
212 | } | |
213 | ||
214 | void SimInfo::calcBoxL( void ){ | |
215 | ||
216 | double dx, dy, dz, dsq; | |
228 | – | int i; |
217 | ||
218 | < | // boxVol = h1 (dot) h2 (cross) h3 |
218 | > | // boxVol = Determinant of Hmat |
219 | ||
220 | < | boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
233 | < | + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
234 | < | + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
220 | > | boxVol = matDet3( Hmat ); |
221 | ||
236 | – | |
222 | // boxLx | |
223 | ||
224 | < | dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
224 | > | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
225 | dsq = dx*dx + dy*dy + dz*dz; | |
226 | < | boxLx = sqrt( dsq ); |
226 | > | boxL[0] = sqrt( dsq ); |
227 | > | //maxCutoff = 0.5 * boxL[0]; |
228 | ||
229 | // boxLy | |
230 | ||
231 | < | dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
231 | > | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
232 | dsq = dx*dx + dy*dy + dz*dz; | |
233 | < | boxLy = sqrt( dsq ); |
233 | > | boxL[1] = sqrt( dsq ); |
234 | > | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
235 | ||
236 | + | |
237 | // boxLz | |
238 | ||
239 | < | dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
239 | > | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
240 | dsq = dx*dx + dy*dy + dz*dz; | |
241 | < | boxLz = sqrt( dsq ); |
241 | > | boxL[2] = sqrt( dsq ); |
242 | > | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
243 | > | |
244 | > | //calculate the max cutoff |
245 | > | maxCutoff = calcMaxCutOff(); |
246 | ||
247 | + | checkCutOffs(); |
248 | + | |
249 | } | |
250 | ||
251 | ||
252 | + | double SimInfo::calcMaxCutOff(){ |
253 | + | |
254 | + | double ri[3], rj[3], rk[3]; |
255 | + | double rij[3], rjk[3], rki[3]; |
256 | + | double minDist; |
257 | + | |
258 | + | ri[0] = Hmat[0][0]; |
259 | + | ri[1] = Hmat[1][0]; |
260 | + | ri[2] = Hmat[2][0]; |
261 | + | |
262 | + | rj[0] = Hmat[0][1]; |
263 | + | rj[1] = Hmat[1][1]; |
264 | + | rj[2] = Hmat[2][1]; |
265 | + | |
266 | + | rk[0] = Hmat[0][2]; |
267 | + | rk[1] = Hmat[1][2]; |
268 | + | rk[2] = Hmat[2][2]; |
269 | + | |
270 | + | crossProduct3(ri, rj, rij); |
271 | + | distXY = dotProduct3(rk,rij) / norm3(rij); |
272 | + | |
273 | + | crossProduct3(rj,rk, rjk); |
274 | + | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
275 | + | |
276 | + | crossProduct3(rk,ri, rki); |
277 | + | distZX = dotProduct3(rj,rki) / norm3(rki); |
278 | + | |
279 | + | minDist = min(min(distXY, distYZ), distZX); |
280 | + | return minDist/2; |
281 | + | |
282 | + | } |
283 | + | |
284 | void SimInfo::wrapVector( double thePos[3] ){ | |
285 | ||
286 | < | int i, j, k; |
286 | > | int i; |
287 | double scaled[3]; | |
288 | ||
289 | if( !orthoRhombic ){ | |
290 | // calc the scaled coordinates. | |
291 | + | |
292 | + | |
293 | + | matVecMul3(HmatInv, thePos, scaled); |
294 | ||
295 | for(i=0; i<3; i++) | |
267 | – | scaled[i] = |
268 | – | thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
269 | – | |
270 | – | // wrap the scaled coordinates |
271 | – | |
272 | – | for(i=0; i<3; i++) |
296 | scaled[i] -= roundMe(scaled[i]); | |
297 | ||
298 | // calc the wrapped real coordinates from the wrapped scaled coordinates | |
299 | ||
300 | < | for(i=0; i<3; i++) |
301 | < | thePos[i] = |
279 | < | scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
300 | > | matVecMul3(Hmat, scaled, thePos); |
301 | > | |
302 | } | |
303 | else{ | |
304 | // calc the scaled coordinates. | |
305 | ||
306 | for(i=0; i<3; i++) | |
307 | < | scaled[i] = thePos[i]*HmatI[i*4]; |
307 | > | scaled[i] = thePos[i]*HmatInv[i][i]; |
308 | ||
309 | // wrap the scaled coordinates | |
310 | ||
# | Line 292 | Line 314 | void SimInfo::wrapVector( double thePos[3] ){ | |
314 | // calc the wrapped real coordinates from the wrapped scaled coordinates | |
315 | ||
316 | for(i=0; i<3; i++) | |
317 | < | thePos[i] = scaled[i]*Hmat[i*4]; |
317 | > | thePos[i] = scaled[i]*Hmat[i][i]; |
318 | } | |
319 | ||
298 | – | |
320 | } | |
321 | ||
322 | ||
323 | int SimInfo::getNDF(){ | |
324 | < | int ndf_local, ndf; |
324 | > | int ndf_local; |
325 | > | |
326 | > | ndf_local = 0; |
327 | ||
328 | < | ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
328 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
329 | > | ndf_local += 3; |
330 | > | if (integrableObjects[i]->isDirectional()) { |
331 | > | if (integrableObjects[i]->isLinear()) |
332 | > | ndf_local += 2; |
333 | > | else |
334 | > | ndf_local += 3; |
335 | > | } |
336 | > | } |
337 | ||
338 | + | // n_constraints is local, so subtract them on each processor: |
339 | + | |
340 | + | ndf_local -= n_constraints; |
341 | + | |
342 | #ifdef IS_MPI | |
343 | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
344 | #else | |
345 | ndf = ndf_local; | |
346 | #endif | |
347 | ||
348 | < | ndf = ndf - 3; |
348 | > | // nZconstraints is global, as are the 3 COM translations for the |
349 | > | // entire system: |
350 | ||
351 | + | ndf = ndf - 3 - nZconstraints; |
352 | + | |
353 | return ndf; | |
354 | } | |
355 | ||
356 | int SimInfo::getNDFraw() { | |
357 | < | int ndfRaw_local, ndfRaw; |
357 | > | int ndfRaw_local; |
358 | ||
359 | // Raw degrees of freedom that we have to set | |
360 | < | ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
361 | < | |
360 | > | ndfRaw_local = 0; |
361 | > | |
362 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
363 | > | ndfRaw_local += 3; |
364 | > | if (integrableObjects[i]->isDirectional()) { |
365 | > | if (integrableObjects[i]->isLinear()) |
366 | > | ndfRaw_local += 2; |
367 | > | else |
368 | > | ndfRaw_local += 3; |
369 | > | } |
370 | > | } |
371 | > | |
372 | #ifdef IS_MPI | |
373 | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
374 | #else | |
# | Line 329 | Line 377 | int SimInfo::getNDFraw() { | |
377 | ||
378 | return ndfRaw; | |
379 | } | |
380 | < | |
380 | > | |
381 | > | int SimInfo::getNDFtranslational() { |
382 | > | int ndfTrans_local; |
383 | > | |
384 | > | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
385 | > | |
386 | > | |
387 | > | #ifdef IS_MPI |
388 | > | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
389 | > | #else |
390 | > | ndfTrans = ndfTrans_local; |
391 | > | #endif |
392 | > | |
393 | > | ndfTrans = ndfTrans - 3 - nZconstraints; |
394 | > | |
395 | > | return ndfTrans; |
396 | > | } |
397 | > | |
398 | > | int SimInfo::getTotIntegrableObjects() { |
399 | > | int nObjs_local; |
400 | > | int nObjs; |
401 | > | |
402 | > | nObjs_local = integrableObjects.size(); |
403 | > | |
404 | > | |
405 | > | #ifdef IS_MPI |
406 | > | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
407 | > | #else |
408 | > | nObjs = nObjs_local; |
409 | > | #endif |
410 | > | |
411 | > | |
412 | > | return nObjs; |
413 | > | } |
414 | > | |
415 | void SimInfo::refreshSim(){ | |
416 | ||
417 | simtype fInfo; | |
418 | int isError; | |
419 | int n_global; | |
420 | int* excl; | |
421 | < | |
340 | < | fInfo.rrf = 0.0; |
341 | < | fInfo.rt = 0.0; |
421 | > | |
422 | fInfo.dielect = 0.0; | |
423 | ||
424 | < | fInfo.rlist = rList; |
345 | < | fInfo.rcut = rCut; |
346 | < | |
347 | < | if( useDipole ){ |
348 | < | fInfo.rrf = ecr; |
349 | < | fInfo.rt = ecr - est; |
424 | > | if( useDipoles ){ |
425 | if( useReactionField )fInfo.dielect = dielectric; | |
426 | } | |
427 | ||
# | Line 355 | Line 430 | void SimInfo::refreshSim(){ | |
430 | fInfo.SIM_uses_LJ = useLJ; | |
431 | fInfo.SIM_uses_sticky = useSticky; | |
432 | //fInfo.SIM_uses_sticky = 0; | |
433 | < | fInfo.SIM_uses_dipoles = useDipole; |
433 | > | fInfo.SIM_uses_charges = useCharges; |
434 | > | fInfo.SIM_uses_dipoles = useDipoles; |
435 | //fInfo.SIM_uses_dipoles = 0; | |
436 | < | //fInfo.SIM_uses_RF = useReactionField; |
437 | < | fInfo.SIM_uses_RF = 0; |
436 | > | fInfo.SIM_uses_RF = useReactionField; |
437 | > | //fInfo.SIM_uses_RF = 0; |
438 | fInfo.SIM_uses_GB = useGB; | |
439 | fInfo.SIM_uses_EAM = useEAM; | |
440 | + | fInfo.SIM_uses_molecular_cutoffs = useMolecularCutoffs; |
441 | ||
442 | < | excl = Exclude::getArray(); |
442 | > | n_exclude = excludes->getSize(); |
443 | > | excl = excludes->getFortranArray(); |
444 | ||
445 | #ifdef IS_MPI | |
446 | n_global = mpiSim->getTotAtoms(); | |
# | Line 392 | Line 470 | void SimInfo::refreshSim(){ | |
470 | ||
471 | this->ndf = this->getNDF(); | |
472 | this->ndfRaw = this->getNDFraw(); | |
473 | + | this->ndfTrans = this->getNDFtranslational(); |
474 | + | } |
475 | ||
476 | + | void SimInfo::setDefaultRcut( double theRcut ){ |
477 | + | |
478 | + | haveRcut = 1; |
479 | + | rCut = theRcut; |
480 | + | |
481 | + | ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
482 | + | |
483 | + | notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
484 | } | |
485 | ||
486 | + | void SimInfo::setDefaultEcr( double theEcr ){ |
487 | + | |
488 | + | haveEcr = 1; |
489 | + | ecr = theEcr; |
490 | + | |
491 | + | ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
492 | + | |
493 | + | notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
494 | + | } |
495 | + | |
496 | + | void SimInfo::setDefaultEcr( double theEcr, double theEst ){ |
497 | + | |
498 | + | est = theEst; |
499 | + | setDefaultEcr( theEcr ); |
500 | + | } |
501 | + | |
502 | + | |
503 | + | void SimInfo::checkCutOffs( void ){ |
504 | + | |
505 | + | if( boxIsInit ){ |
506 | + | |
507 | + | //we need to check cutOffs against the box |
508 | + | |
509 | + | if( rCut > maxCutoff ){ |
510 | + | sprintf( painCave.errMsg, |
511 | + | "LJrcut is too large for the current periodic box.\n" |
512 | + | "\tCurrent Value of LJrcut = %G at time %G\n " |
513 | + | "\tThis is larger than half of at least one of the\n" |
514 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
515 | + | "\n" |
516 | + | "\t[ %G %G %G ]\n" |
517 | + | "\t[ %G %G %G ]\n" |
518 | + | "\t[ %G %G %G ]\n", |
519 | + | rCut, currentTime, |
520 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
521 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
522 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
523 | + | painCave.isFatal = 1; |
524 | + | simError(); |
525 | + | } |
526 | + | |
527 | + | if( haveEcr ){ |
528 | + | if( ecr > maxCutoff ){ |
529 | + | sprintf( painCave.errMsg, |
530 | + | "electrostaticCutoffRadius is too large for the current\n" |
531 | + | "\tperiodic box.\n\n" |
532 | + | "\tCurrent Value of ECR = %G at time %G\n " |
533 | + | "\tThis is larger than half of at least one of the\n" |
534 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
535 | + | "\n" |
536 | + | "\t[ %G %G %G ]\n" |
537 | + | "\t[ %G %G %G ]\n" |
538 | + | "\t[ %G %G %G ]\n", |
539 | + | ecr, currentTime, |
540 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
541 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
542 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
543 | + | painCave.isFatal = 1; |
544 | + | simError(); |
545 | + | } |
546 | + | } |
547 | + | } else { |
548 | + | // initialize this stuff before using it, OK? |
549 | + | sprintf( painCave.errMsg, |
550 | + | "Trying to check cutoffs without a box.\n" |
551 | + | "\tOOPSE should have better programmers than that.\n" ); |
552 | + | painCave.isFatal = 1; |
553 | + | simError(); |
554 | + | } |
555 | + | |
556 | + | } |
557 | + | |
558 | + | void SimInfo::addProperty(GenericData* prop){ |
559 | + | |
560 | + | map<string, GenericData*>::iterator result; |
561 | + | result = properties.find(prop->getID()); |
562 | + | |
563 | + | //we can't simply use properties[prop->getID()] = prop, |
564 | + | //it will cause memory leak if we already contain a propery which has the same name of prop |
565 | + | |
566 | + | if(result != properties.end()){ |
567 | + | |
568 | + | delete (*result).second; |
569 | + | (*result).second = prop; |
570 | + | |
571 | + | } |
572 | + | else{ |
573 | + | |
574 | + | properties[prop->getID()] = prop; |
575 | + | |
576 | + | } |
577 | + | |
578 | + | } |
579 | + | |
580 | + | GenericData* SimInfo::getProperty(const string& propName){ |
581 | + | |
582 | + | map<string, GenericData*>::iterator result; |
583 | + | |
584 | + | //string lowerCaseName = (); |
585 | + | |
586 | + | result = properties.find(propName); |
587 | + | |
588 | + | if(result != properties.end()) |
589 | + | return (*result).second; |
590 | + | else |
591 | + | return NULL; |
592 | + | } |
593 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |