# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <cstdlib> |
2 | < | #include <cstring> |
3 | < | #include <cmath> |
1 | > | #include <stdlib.h> |
2 | > | #include <string.h> |
3 | > | #include <math.h> |
4 | ||
5 | #include <iostream> | |
6 | using namespace std; | |
# | Line 12 | Line 12 | using namespace std; | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #include "MatVec3.h" |
16 | + | |
17 | #ifdef IS_MPI | |
18 | #include "mpiSimulation.hpp" | |
19 | #endif | |
# | Line 20 | Line 22 | inline double roundMe( double x ){ | |
22 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | |
23 | } | |
24 | ||
25 | + | inline double min( double a, double b ){ |
26 | + | return (a < b ) ? a : b; |
27 | + | } |
28 | ||
29 | SimInfo* currentInfo; | |
30 | ||
31 | SimInfo::SimInfo(){ | |
32 | < | excludes = NULL; |
32 | > | |
33 | n_constraints = 0; | |
34 | + | nZconstraints = 0; |
35 | n_oriented = 0; | |
36 | n_dipoles = 0; | |
37 | ndf = 0; | |
38 | ndfRaw = 0; | |
39 | + | nZconstraints = 0; |
40 | the_integrator = NULL; | |
41 | setTemp = 0; | |
42 | thermalTime = 0.0; | |
43 | + | currentTime = 0.0; |
44 | rCut = 0.0; | |
45 | < | ecr = 0.0; |
45 | > | rSw = 0.0; |
46 | ||
47 | + | haveRcut = 0; |
48 | + | haveRsw = 0; |
49 | + | boxIsInit = 0; |
50 | + | |
51 | + | resetTime = 1e99; |
52 | + | |
53 | + | orthoRhombic = 0; |
54 | + | orthoTolerance = 1E-6; |
55 | + | useInitXSstate = true; |
56 | + | |
57 | usePBC = 0; | |
58 | useLJ = 0; | |
59 | useSticky = 0; | |
60 | < | useDipole = 0; |
60 | > | useCharges = 0; |
61 | > | useDipoles = 0; |
62 | useReactionField = 0; | |
63 | useGB = 0; | |
64 | useEAM = 0; | |
65 | + | useSolidThermInt = 0; |
66 | + | useLiquidThermInt = 0; |
67 | ||
68 | + | haveCutoffGroups = false; |
69 | + | |
70 | + | excludes = Exclude::Instance(); |
71 | + | |
72 | + | myConfiguration = new SimState(); |
73 | + | |
74 | + | has_minimizer = false; |
75 | + | the_minimizer =NULL; |
76 | + | |
77 | + | ngroup = 0; |
78 | + | |
79 | wrapMeSimInfo( this ); | |
80 | } | |
81 | ||
82 | + | |
83 | + | SimInfo::~SimInfo(){ |
84 | + | |
85 | + | delete myConfiguration; |
86 | + | |
87 | + | map<string, GenericData*>::iterator i; |
88 | + | |
89 | + | for(i = properties.begin(); i != properties.end(); i++) |
90 | + | delete (*i).second; |
91 | + | |
92 | + | } |
93 | + | |
94 | void SimInfo::setBox(double newBox[3]) { | |
95 | ||
96 | int i, j; | |
# | Line 65 | Line 109 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
109 | ||
110 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
111 | ||
112 | < | int i, j, status; |
69 | < | double smallestBoxL, maxCutoff; |
112 | > | int i, j; |
113 | double FortranHmat[9]; // to preserve compatibility with Fortran the | |
114 | // ordering in the array is as follows: | |
115 | // [ 0 3 6 ] | |
# | Line 74 | Line 117 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
117 | // [ 2 5 8 ] | |
118 | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | |
119 | ||
120 | + | if( !boxIsInit ) boxIsInit = 1; |
121 | ||
122 | for(i=0; i < 3; i++) | |
123 | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | |
124 | ||
81 | – | // cerr |
82 | – | // << "setting Hmat ->\n" |
83 | – | // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
84 | – | // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
85 | – | // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
86 | – | |
125 | calcBoxL(); | |
126 | calcHmatInv(); | |
127 | ||
# | Line 96 | Line 134 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
134 | ||
135 | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); | |
136 | ||
99 | – | smallestBoxL = boxLx; |
100 | – | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
101 | – | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
102 | – | |
103 | – | maxCutoff = smallestBoxL / 2.0; |
104 | – | |
105 | – | if (rList > maxCutoff) { |
106 | – | sprintf( painCave.errMsg, |
107 | – | "New Box size is forcing neighborlist radius down to %lf\n", |
108 | – | maxCutoff ); |
109 | – | painCave.isFatal = 0; |
110 | – | simError(); |
111 | – | |
112 | – | rList = maxCutoff; |
113 | – | |
114 | – | sprintf( painCave.errMsg, |
115 | – | "New Box size is forcing cutoff radius down to %lf\n", |
116 | – | maxCutoff - 1.0 ); |
117 | – | painCave.isFatal = 0; |
118 | – | simError(); |
119 | – | |
120 | – | rCut = rList - 1.0; |
121 | – | |
122 | – | // list radius changed so we have to refresh the simulation structure. |
123 | – | refreshSim(); |
124 | – | } |
125 | – | |
126 | – | if( ecr > maxCutoff ){ |
127 | – | |
128 | – | sprintf( painCave.errMsg, |
129 | – | "New Box size is forcing electrostatic cutoff radius " |
130 | – | "down to %lf\n", |
131 | – | maxCutoff ); |
132 | – | painCave.isFatal = 0; |
133 | – | simError(); |
134 | – | |
135 | – | ecr = maxCutoff; |
136 | – | est = 0.05 * ecr; |
137 | – | |
138 | – | refreshSim(); |
139 | – | } |
140 | – | |
137 | } | |
138 | ||
139 | ||
# | Line 164 | Line 160 | void SimInfo::calcHmatInv( void ) { | |
160 | ||
161 | void SimInfo::calcHmatInv( void ) { | |
162 | ||
163 | + | int oldOrtho; |
164 | int i,j; | |
165 | double smallDiag; | |
166 | double tol; | |
# | Line 171 | Line 168 | void SimInfo::calcHmatInv( void ) { | |
168 | ||
169 | invertMat3( Hmat, HmatInv ); | |
170 | ||
174 | – | // Check the inverse to make sure it is sane: |
175 | – | |
176 | – | matMul3( Hmat, HmatInv, sanity ); |
177 | – | |
171 | // check to see if Hmat is orthorhombic | |
172 | ||
173 | < | smallDiag = Hmat[0][0]; |
181 | < | if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
182 | < | if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
183 | < | tol = smallDiag * 1E-6; |
173 | > | oldOrtho = orthoRhombic; |
174 | ||
175 | + | smallDiag = fabs(Hmat[0][0]); |
176 | + | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
177 | + | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
178 | + | tol = smallDiag * orthoTolerance; |
179 | + | |
180 | orthoRhombic = 1; | |
181 | ||
182 | for (i = 0; i < 3; i++ ) { | |
183 | for (j = 0 ; j < 3; j++) { | |
184 | if (i != j) { | |
185 | if (orthoRhombic) { | |
186 | < | if (Hmat[i][j] >= tol) orthoRhombic = 0; |
186 | > | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
187 | } | |
188 | } | |
189 | } | |
190 | } | |
196 | – | } |
191 | ||
192 | < | double SimInfo::matDet3(double a[3][3]) { |
193 | < | int i, j, k; |
194 | < | double determinant; |
195 | < | |
196 | < | determinant = 0.0; |
197 | < | |
198 | < | for(i = 0; i < 3; i++) { |
199 | < | j = (i+1)%3; |
200 | < | k = (i+2)%3; |
201 | < | |
202 | < | determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
209 | < | } |
210 | < | |
211 | < | return determinant; |
212 | < | } |
213 | < | |
214 | < | void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
215 | < | |
216 | < | int i, j, k, l, m, n; |
217 | < | double determinant; |
218 | < | |
219 | < | determinant = matDet3( a ); |
220 | < | |
221 | < | if (determinant == 0.0) { |
222 | < | sprintf( painCave.errMsg, |
223 | < | "Can't invert a matrix with a zero determinant!\n"); |
224 | < | painCave.isFatal = 1; |
225 | < | simError(); |
226 | < | } |
227 | < | |
228 | < | for (i=0; i < 3; i++) { |
229 | < | j = (i+1)%3; |
230 | < | k = (i+2)%3; |
231 | < | for(l = 0; l < 3; l++) { |
232 | < | m = (l+1)%3; |
233 | < | n = (l+2)%3; |
234 | < | |
235 | < | b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
192 | > | if( oldOrtho != orthoRhombic ){ |
193 | > | |
194 | > | if( orthoRhombic ){ |
195 | > | sprintf( painCave.errMsg, |
196 | > | "OOPSE is switching from the default Non-Orthorhombic\n" |
197 | > | "\tto the faster Orthorhombic periodic boundary computations.\n" |
198 | > | "\tThis is usually a good thing, but if you wan't the\n" |
199 | > | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 | > | "\tvariable ( currently set to %G ) smaller.\n", |
201 | > | orthoTolerance); |
202 | > | simError(); |
203 | } | |
204 | < | } |
205 | < | } |
206 | < | |
207 | < | void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
208 | < | double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
209 | < | |
210 | < | r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
211 | < | r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
212 | < | r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
213 | < | |
247 | < | r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
248 | < | r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
249 | < | r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
250 | < | |
251 | < | r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
252 | < | r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
253 | < | r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
254 | < | |
255 | < | c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
256 | < | c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
257 | < | c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
258 | < | } |
259 | < | |
260 | < | void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
261 | < | double a0, a1, a2; |
262 | < | |
263 | < | a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
264 | < | |
265 | < | outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
266 | < | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
267 | < | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
268 | < | } |
269 | < | |
270 | < | void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
271 | < | double temp[3][3]; |
272 | < | int i, j; |
273 | < | |
274 | < | for (i = 0; i < 3; i++) { |
275 | < | for (j = 0; j < 3; j++) { |
276 | < | temp[j][i] = in[i][j]; |
204 | > | else { |
205 | > | sprintf( painCave.errMsg, |
206 | > | "OOPSE is switching from the faster Orthorhombic to the more\n" |
207 | > | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
208 | > | "\tThis is usually because the box has deformed under\n" |
209 | > | "\tNPTf integration. If you wan't to live on the edge with\n" |
210 | > | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
211 | > | "\tvariable ( currently set to %G ) larger.\n", |
212 | > | orthoTolerance); |
213 | > | simError(); |
214 | } | |
215 | } | |
279 | – | for (i = 0; i < 3; i++) { |
280 | – | for (j = 0; j < 3; j++) { |
281 | – | out[i][j] = temp[i][j]; |
282 | – | } |
283 | – | } |
216 | } | |
285 | – | |
286 | – | void SimInfo::printMat3(double A[3][3] ){ |
217 | ||
288 | – | std::cerr |
289 | – | << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
290 | – | << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
291 | – | << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
292 | – | } |
293 | – | |
294 | – | void SimInfo::printMat9(double A[9] ){ |
295 | – | |
296 | – | std::cerr |
297 | – | << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
298 | – | << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
299 | – | << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
300 | – | } |
301 | – | |
218 | void SimInfo::calcBoxL( void ){ | |
219 | ||
220 | double dx, dy, dz, dsq; | |
305 | – | int i; |
221 | ||
222 | // boxVol = Determinant of Hmat | |
223 | ||
# | Line 312 | Line 227 | void SimInfo::calcBoxL( void ){ | |
227 | ||
228 | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | |
229 | dsq = dx*dx + dy*dy + dz*dz; | |
230 | < | boxLx = sqrt( dsq ); |
230 | > | boxL[0] = sqrt( dsq ); |
231 | > | //maxCutoff = 0.5 * boxL[0]; |
232 | ||
233 | // boxLy | |
234 | ||
235 | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | |
236 | dsq = dx*dx + dy*dy + dz*dz; | |
237 | < | boxLy = sqrt( dsq ); |
237 | > | boxL[1] = sqrt( dsq ); |
238 | > | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
239 | ||
240 | + | |
241 | // boxLz | |
242 | ||
243 | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | |
244 | dsq = dx*dx + dy*dy + dz*dz; | |
245 | < | boxLz = sqrt( dsq ); |
245 | > | boxL[2] = sqrt( dsq ); |
246 | > | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
247 | > | |
248 | > | //calculate the max cutoff |
249 | > | maxCutoff = calcMaxCutOff(); |
250 | ||
251 | + | checkCutOffs(); |
252 | + | |
253 | } | |
254 | + | |
255 | + | |
256 | + | double SimInfo::calcMaxCutOff(){ |
257 | + | |
258 | + | double ri[3], rj[3], rk[3]; |
259 | + | double rij[3], rjk[3], rki[3]; |
260 | + | double minDist; |
261 | + | |
262 | + | ri[0] = Hmat[0][0]; |
263 | + | ri[1] = Hmat[1][0]; |
264 | + | ri[2] = Hmat[2][0]; |
265 | + | |
266 | + | rj[0] = Hmat[0][1]; |
267 | + | rj[1] = Hmat[1][1]; |
268 | + | rj[2] = Hmat[2][1]; |
269 | + | |
270 | + | rk[0] = Hmat[0][2]; |
271 | + | rk[1] = Hmat[1][2]; |
272 | + | rk[2] = Hmat[2][2]; |
273 | + | |
274 | + | crossProduct3(ri, rj, rij); |
275 | + | distXY = dotProduct3(rk,rij) / norm3(rij); |
276 | + | |
277 | + | crossProduct3(rj,rk, rjk); |
278 | + | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
279 | + | |
280 | + | crossProduct3(rk,ri, rki); |
281 | + | distZX = dotProduct3(rj,rki) / norm3(rki); |
282 | ||
283 | + | minDist = min(min(distXY, distYZ), distZX); |
284 | + | return minDist/2; |
285 | + | |
286 | + | } |
287 | ||
288 | void SimInfo::wrapVector( double thePos[3] ){ | |
289 | ||
290 | < | int i, j, k; |
290 | > | int i; |
291 | double scaled[3]; | |
292 | ||
293 | if( !orthoRhombic ){ | |
# | Line 369 | Line 325 | int SimInfo::getNDF(){ | |
325 | ||
326 | ||
327 | int SimInfo::getNDF(){ | |
328 | < | int ndf_local, ndf; |
328 | > | int ndf_local; |
329 | > | |
330 | > | ndf_local = 0; |
331 | ||
332 | < | ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
332 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
333 | > | ndf_local += 3; |
334 | > | if (integrableObjects[i]->isDirectional()) { |
335 | > | if (integrableObjects[i]->isLinear()) |
336 | > | ndf_local += 2; |
337 | > | else |
338 | > | ndf_local += 3; |
339 | > | } |
340 | > | } |
341 | ||
342 | + | // n_constraints is local, so subtract them on each processor: |
343 | + | |
344 | + | ndf_local -= n_constraints; |
345 | + | |
346 | #ifdef IS_MPI | |
347 | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
348 | #else | |
349 | ndf = ndf_local; | |
350 | #endif | |
351 | ||
352 | < | ndf = ndf - 3; |
352 | > | // nZconstraints is global, as are the 3 COM translations for the |
353 | > | // entire system: |
354 | ||
355 | + | ndf = ndf - 3 - nZconstraints; |
356 | + | |
357 | return ndf; | |
358 | } | |
359 | ||
360 | int SimInfo::getNDFraw() { | |
361 | < | int ndfRaw_local, ndfRaw; |
361 | > | int ndfRaw_local; |
362 | ||
363 | // Raw degrees of freedom that we have to set | |
364 | < | ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
365 | < | |
364 | > | ndfRaw_local = 0; |
365 | > | |
366 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
367 | > | ndfRaw_local += 3; |
368 | > | if (integrableObjects[i]->isDirectional()) { |
369 | > | if (integrableObjects[i]->isLinear()) |
370 | > | ndfRaw_local += 2; |
371 | > | else |
372 | > | ndfRaw_local += 3; |
373 | > | } |
374 | > | } |
375 | > | |
376 | #ifdef IS_MPI | |
377 | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
378 | #else | |
# | Line 398 | Line 381 | int SimInfo::getNDFraw() { | |
381 | ||
382 | return ndfRaw; | |
383 | } | |
384 | < | |
384 | > | |
385 | > | int SimInfo::getNDFtranslational() { |
386 | > | int ndfTrans_local; |
387 | > | |
388 | > | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
389 | > | |
390 | > | |
391 | > | #ifdef IS_MPI |
392 | > | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
393 | > | #else |
394 | > | ndfTrans = ndfTrans_local; |
395 | > | #endif |
396 | > | |
397 | > | ndfTrans = ndfTrans - 3 - nZconstraints; |
398 | > | |
399 | > | return ndfTrans; |
400 | > | } |
401 | > | |
402 | > | int SimInfo::getTotIntegrableObjects() { |
403 | > | int nObjs_local; |
404 | > | int nObjs; |
405 | > | |
406 | > | nObjs_local = integrableObjects.size(); |
407 | > | |
408 | > | |
409 | > | #ifdef IS_MPI |
410 | > | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
411 | > | #else |
412 | > | nObjs = nObjs_local; |
413 | > | #endif |
414 | > | |
415 | > | |
416 | > | return nObjs; |
417 | > | } |
418 | > | |
419 | void SimInfo::refreshSim(){ | |
420 | ||
421 | simtype fInfo; | |
422 | int isError; | |
423 | int n_global; | |
424 | int* excl; | |
425 | < | |
409 | < | fInfo.rrf = 0.0; |
410 | < | fInfo.rt = 0.0; |
425 | > | |
426 | fInfo.dielect = 0.0; | |
427 | ||
428 | < | fInfo.rlist = rList; |
414 | < | fInfo.rcut = rCut; |
415 | < | |
416 | < | if( useDipole ){ |
417 | < | fInfo.rrf = ecr; |
418 | < | fInfo.rt = ecr - est; |
428 | > | if( useDipoles ){ |
429 | if( useReactionField )fInfo.dielect = dielectric; | |
430 | } | |
431 | ||
# | Line 424 | Line 434 | void SimInfo::refreshSim(){ | |
434 | fInfo.SIM_uses_LJ = useLJ; | |
435 | fInfo.SIM_uses_sticky = useSticky; | |
436 | //fInfo.SIM_uses_sticky = 0; | |
437 | < | fInfo.SIM_uses_dipoles = useDipole; |
437 | > | fInfo.SIM_uses_charges = useCharges; |
438 | > | fInfo.SIM_uses_dipoles = useDipoles; |
439 | //fInfo.SIM_uses_dipoles = 0; | |
440 | < | //fInfo.SIM_uses_RF = useReactionField; |
441 | < | fInfo.SIM_uses_RF = 0; |
440 | > | fInfo.SIM_uses_RF = useReactionField; |
441 | > | //fInfo.SIM_uses_RF = 0; |
442 | fInfo.SIM_uses_GB = useGB; | |
443 | fInfo.SIM_uses_EAM = useEAM; | |
444 | ||
445 | < | excl = Exclude::getArray(); |
446 | < | |
445 | > | n_exclude = excludes->getSize(); |
446 | > | excl = excludes->getFortranArray(); |
447 | > | |
448 | #ifdef IS_MPI | |
449 | < | n_global = mpiSim->getTotAtoms(); |
449 | > | n_global = mpiSim->getNAtomsGlobal(); |
450 | #else | |
451 | n_global = n_atoms; | |
452 | #endif | |
453 | < | |
453 | > | |
454 | isError = 0; | |
455 | < | |
455 | > | |
456 | > | getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
457 | > | //it may not be a good idea to pass the address of first element in vector |
458 | > | //since c++ standard does not require vector to be stored continuously in meomory |
459 | > | //Most of the compilers will organize the memory of vector continuously |
460 | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, | |
461 | < | &nGlobalExcludes, globalExcludes, molMembershipArray, |
462 | < | &isError ); |
463 | < | |
461 | > | &nGlobalExcludes, globalExcludes, molMembershipArray, |
462 | > | &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
463 | > | |
464 | if( isError ){ | |
465 | < | |
465 | > | |
466 | sprintf( painCave.errMsg, | |
467 | < | "There was an error setting the simulation information in fortran.\n" ); |
467 | > | "There was an error setting the simulation information in fortran.\n" ); |
468 | painCave.isFatal = 1; | |
469 | simError(); | |
470 | } | |
471 | < | |
471 | > | |
472 | #ifdef IS_MPI | |
473 | sprintf( checkPointMsg, | |
474 | "succesfully sent the simulation information to fortran.\n"); | |
475 | MPIcheckPoint(); | |
476 | #endif // is_mpi | |
477 | < | |
477 | > | |
478 | this->ndf = this->getNDF(); | |
479 | this->ndfRaw = this->getNDFraw(); | |
480 | + | this->ndfTrans = this->getNDFtranslational(); |
481 | + | } |
482 | ||
483 | + | void SimInfo::setDefaultRcut( double theRcut ){ |
484 | + | |
485 | + | haveRcut = 1; |
486 | + | rCut = theRcut; |
487 | + | rList = rCut + 1.0; |
488 | + | |
489 | + | notifyFortranCutOffs( &rCut, &rSw, &rList ); |
490 | } | |
491 | ||
492 | + | void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
493 | + | |
494 | + | rSw = theRsw; |
495 | + | setDefaultRcut( theRcut ); |
496 | + | } |
497 | + | |
498 | + | |
499 | + | void SimInfo::checkCutOffs( void ){ |
500 | + | |
501 | + | if( boxIsInit ){ |
502 | + | |
503 | + | //we need to check cutOffs against the box |
504 | + | |
505 | + | if( rCut > maxCutoff ){ |
506 | + | sprintf( painCave.errMsg, |
507 | + | "cutoffRadius is too large for the current periodic box.\n" |
508 | + | "\tCurrent Value of cutoffRadius = %G at time %G\n " |
509 | + | "\tThis is larger than half of at least one of the\n" |
510 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
511 | + | "\n" |
512 | + | "\t[ %G %G %G ]\n" |
513 | + | "\t[ %G %G %G ]\n" |
514 | + | "\t[ %G %G %G ]\n", |
515 | + | rCut, currentTime, |
516 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
517 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
518 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
519 | + | painCave.isFatal = 1; |
520 | + | simError(); |
521 | + | } |
522 | + | } else { |
523 | + | // initialize this stuff before using it, OK? |
524 | + | sprintf( painCave.errMsg, |
525 | + | "Trying to check cutoffs without a box.\n" |
526 | + | "\tOOPSE should have better programmers than that.\n" ); |
527 | + | painCave.isFatal = 1; |
528 | + | simError(); |
529 | + | } |
530 | + | |
531 | + | } |
532 | + | |
533 | + | void SimInfo::addProperty(GenericData* prop){ |
534 | + | |
535 | + | map<string, GenericData*>::iterator result; |
536 | + | result = properties.find(prop->getID()); |
537 | + | |
538 | + | //we can't simply use properties[prop->getID()] = prop, |
539 | + | //it will cause memory leak if we already contain a propery which has the same name of prop |
540 | + | |
541 | + | if(result != properties.end()){ |
542 | + | |
543 | + | delete (*result).second; |
544 | + | (*result).second = prop; |
545 | + | |
546 | + | } |
547 | + | else{ |
548 | + | |
549 | + | properties[prop->getID()] = prop; |
550 | + | |
551 | + | } |
552 | + | |
553 | + | } |
554 | + | |
555 | + | GenericData* SimInfo::getProperty(const string& propName){ |
556 | + | |
557 | + | map<string, GenericData*>::iterator result; |
558 | + | |
559 | + | //string lowerCaseName = (); |
560 | + | |
561 | + | result = properties.find(propName); |
562 | + | |
563 | + | if(result != properties.end()) |
564 | + | return (*result).second; |
565 | + | else |
566 | + | return NULL; |
567 | + | } |
568 | + | |
569 | + | |
570 | + | void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
571 | + | vector<int>& groupList, vector<int>& groupStart){ |
572 | + | Molecule* myMols; |
573 | + | Atom** myAtoms; |
574 | + | int numAtom; |
575 | + | int curIndex; |
576 | + | double mtot; |
577 | + | int numMol; |
578 | + | int numCutoffGroups; |
579 | + | CutoffGroup* myCutoffGroup; |
580 | + | vector<CutoffGroup*>::iterator iterCutoff; |
581 | + | Atom* cutoffAtom; |
582 | + | vector<Atom*>::iterator iterAtom; |
583 | + | int atomIndex; |
584 | + | double totalMass; |
585 | + | |
586 | + | mfact.clear(); |
587 | + | groupList.clear(); |
588 | + | groupStart.clear(); |
589 | + | |
590 | + | //Be careful, fortran array begin at 1 |
591 | + | curIndex = 1; |
592 | + | |
593 | + | myMols = info->molecules; |
594 | + | numMol = info->n_mol; |
595 | + | for(int i = 0; i < numMol; i++){ |
596 | + | numCutoffGroups = myMols[i].getNCutoffGroups(); |
597 | + | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; |
598 | + | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
599 | + | |
600 | + | totalMass = myCutoffGroup->getMass(); |
601 | + | |
602 | + | for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL; |
603 | + | cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
604 | + | mfact.push_back(cutoffAtom->getMass()/totalMass); |
605 | + | #ifdef IS_MPI |
606 | + | groupList.push_back(cutoffAtom->getGlobalIndex() + 1); |
607 | + | #else |
608 | + | groupList.push_back(cutoffAtom->getIndex() + 1); |
609 | + | #endif |
610 | + | } |
611 | + | |
612 | + | groupStart.push_back(curIndex); |
613 | + | curIndex += myCutoffGroup->getNumAtom(); |
614 | + | |
615 | + | }//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) |
616 | + | |
617 | + | }//end for(int i = 0; i < numMol; i++) |
618 | + | |
619 | + | |
620 | + | //The last cutoff group need more element to indicate the end of the cutoff |
621 | + | ngroup = groupStart.size(); |
622 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |