ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 621
Committed: Wed Jul 16 02:11:02 2003 UTC (20 years, 11 months ago) by gezelter
File size: 10128 byte(s)
Log Message:
more fixes for box changes

File Contents

# Content
1 #include <cstdlib>
2 #include <cstring>
3 #include <cmath>
4
5 #include <iostream>
6 using namespace std;
7
8 #include "SimInfo.hpp"
9 #define __C
10 #include "fSimulation.h"
11 #include "simError.h"
12
13 #include "fortranWrappers.hpp"
14
15 #ifdef IS_MPI
16 #include "mpiSimulation.hpp"
17 #endif
18
19 inline double roundMe( double x ){
20 return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21 }
22
23
24 SimInfo* currentInfo;
25
26 SimInfo::SimInfo(){
27 excludes = NULL;
28 n_constraints = 0;
29 n_oriented = 0;
30 n_dipoles = 0;
31 ndf = 0;
32 ndfRaw = 0;
33 the_integrator = NULL;
34 setTemp = 0;
35 thermalTime = 0.0;
36 rCut = 0.0;
37 ecr = 0.0;
38 est = 0.0;
39
40 usePBC = 0;
41 useLJ = 0;
42 useSticky = 0;
43 useDipole = 0;
44 useReactionField = 0;
45 useGB = 0;
46 useEAM = 0;
47
48 wrapMeSimInfo( this );
49 }
50
51 void SimInfo::setBox(double newBox[3]) {
52
53 int i, j;
54 double tempMat[3][3];
55
56 for(i=0; i<3; i++)
57 for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
58
59 tempMat[0][0] = newBox[0];
60 tempMat[1][1] = newBox[1];
61 tempMat[2][2] = newBox[2];
62
63 setBoxM( tempMat );
64
65 }
66
67 void SimInfo::setBoxM( double theBox[3][3] ){
68
69 int i, j, status;
70 double smallestBoxL, maxCutoff;
71 double FortranHmat[9]; // to preserve compatibility with Fortran the
72 // ordering in the array is as follows:
73 // [ 0 3 6 ]
74 // [ 1 4 7 ]
75 // [ 2 5 8 ]
76 double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
77
78
79 for(i=0; i < 3; i++)
80 for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
81
82 // cerr
83 // << "setting Hmat ->\n"
84 // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n"
85 // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n"
86 // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n";
87
88 calcBoxL();
89 calcHmatInv();
90
91 for(i=0; i < 3; i++) {
92 for (j=0; j < 3; j++) {
93 FortranHmat[3*j + i] = Hmat[i][j];
94 FortranHmatInv[3*j + i] = HmatInv[i][j];
95 }
96 }
97
98 setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
99
100 smallestBoxL = boxL[0];
101 if (boxL[1] < smallestBoxL) smallestBoxL = boxL[1];
102 if (boxL[2] > smallestBoxL) smallestBoxL = boxL[2];
103
104 maxCutoff = smallestBoxL / 2.0;
105
106 if (rList > maxCutoff) {
107 sprintf( painCave.errMsg,
108 "New Box size is forcing neighborlist radius down to %lf\n",
109 maxCutoff );
110 painCave.isFatal = 0;
111 simError();
112 rList = maxCutoff;
113
114 if (rCut > (rList - 1.0)) {
115 sprintf( painCave.errMsg,
116 "New Box size is forcing LJ cutoff radius down to %lf\n",
117 rList - 1.0 );
118 painCave.isFatal = 0;
119 simError();
120 rCut = rList - 1.0;
121 }
122
123 if( ecr > (rList - 1.0) ){
124 sprintf( painCave.errMsg,
125 "New Box size is forcing electrostaticCutoffRadius "
126 "down to %lf\n"
127 "electrostaticSkinThickness is now %lf\n",
128 rList - 1.0, 0.05*(rList-1.0) );
129 painCave.isFatal = 0;
130 simError();
131 ecr = maxCutoff;
132 est = 0.05 * ecr;
133 }
134
135 // At least one of the radii changed, so we need a refresh:
136 refreshSim();
137 }
138 }
139
140
141 void SimInfo::getBoxM (double theBox[3][3]) {
142
143 int i, j;
144 for(i=0; i<3; i++)
145 for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
146 }
147
148
149 void SimInfo::scaleBox(double scale) {
150 double theBox[3][3];
151 int i, j;
152
153 // cerr << "Scaling box by " << scale << "\n";
154
155 for(i=0; i<3; i++)
156 for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
157
158 setBoxM(theBox);
159
160 }
161
162 void SimInfo::calcHmatInv( void ) {
163
164 int i,j;
165 double smallDiag;
166 double tol;
167 double sanity[3][3];
168
169 invertMat3( Hmat, HmatInv );
170
171 // Check the inverse to make sure it is sane:
172
173 matMul3( Hmat, HmatInv, sanity );
174
175 // check to see if Hmat is orthorhombic
176
177 smallDiag = Hmat[0][0];
178 if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
179 if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
180 tol = smallDiag * 1E-6;
181
182 orthoRhombic = 1;
183
184 for (i = 0; i < 3; i++ ) {
185 for (j = 0 ; j < 3; j++) {
186 if (i != j) {
187 if (orthoRhombic) {
188 if (Hmat[i][j] >= tol) orthoRhombic = 0;
189 }
190 }
191 }
192 }
193 }
194
195 double SimInfo::matDet3(double a[3][3]) {
196 int i, j, k;
197 double determinant;
198
199 determinant = 0.0;
200
201 for(i = 0; i < 3; i++) {
202 j = (i+1)%3;
203 k = (i+2)%3;
204
205 determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
206 }
207
208 return determinant;
209 }
210
211 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
212
213 int i, j, k, l, m, n;
214 double determinant;
215
216 determinant = matDet3( a );
217
218 if (determinant == 0.0) {
219 sprintf( painCave.errMsg,
220 "Can't invert a matrix with a zero determinant!\n");
221 painCave.isFatal = 1;
222 simError();
223 }
224
225 for (i=0; i < 3; i++) {
226 j = (i+1)%3;
227 k = (i+2)%3;
228 for(l = 0; l < 3; l++) {
229 m = (l+1)%3;
230 n = (l+2)%3;
231
232 b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
233 }
234 }
235 }
236
237 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
238 double r00, r01, r02, r10, r11, r12, r20, r21, r22;
239
240 r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
241 r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
242 r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
243
244 r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
245 r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
246 r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
247
248 r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
249 r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
250 r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
251
252 c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
253 c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
254 c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
255 }
256
257 void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
258 double a0, a1, a2;
259
260 a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
261
262 outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
263 outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
264 outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
265 }
266
267 void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
268 double temp[3][3];
269 int i, j;
270
271 for (i = 0; i < 3; i++) {
272 for (j = 0; j < 3; j++) {
273 temp[j][i] = in[i][j];
274 }
275 }
276 for (i = 0; i < 3; i++) {
277 for (j = 0; j < 3; j++) {
278 out[i][j] = temp[i][j];
279 }
280 }
281 }
282
283 void SimInfo::printMat3(double A[3][3] ){
284
285 std::cerr
286 << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
287 << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
288 << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
289 }
290
291 void SimInfo::printMat9(double A[9] ){
292
293 std::cerr
294 << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
295 << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
296 << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
297 }
298
299 void SimInfo::calcBoxL( void ){
300
301 double dx, dy, dz, dsq;
302 int i;
303
304 // boxVol = Determinant of Hmat
305
306 boxVol = matDet3( Hmat );
307
308 // boxLx
309
310 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
311 dsq = dx*dx + dy*dy + dz*dz;
312 boxL[0] = sqrt( dsq );
313
314 // boxLy
315
316 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
317 dsq = dx*dx + dy*dy + dz*dz;
318 boxL[1] = sqrt( dsq );
319
320 // boxLz
321
322 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
323 dsq = dx*dx + dy*dy + dz*dz;
324 boxL[2] = sqrt( dsq );
325
326 }
327
328
329 void SimInfo::wrapVector( double thePos[3] ){
330
331 int i, j, k;
332 double scaled[3];
333
334 if( !orthoRhombic ){
335 // calc the scaled coordinates.
336
337
338 matVecMul3(HmatInv, thePos, scaled);
339
340 for(i=0; i<3; i++)
341 scaled[i] -= roundMe(scaled[i]);
342
343 // calc the wrapped real coordinates from the wrapped scaled coordinates
344
345 matVecMul3(Hmat, scaled, thePos);
346
347 }
348 else{
349 // calc the scaled coordinates.
350
351 for(i=0; i<3; i++)
352 scaled[i] = thePos[i]*HmatInv[i][i];
353
354 // wrap the scaled coordinates
355
356 for(i=0; i<3; i++)
357 scaled[i] -= roundMe(scaled[i]);
358
359 // calc the wrapped real coordinates from the wrapped scaled coordinates
360
361 for(i=0; i<3; i++)
362 thePos[i] = scaled[i]*Hmat[i][i];
363 }
364
365 }
366
367
368 int SimInfo::getNDF(){
369 int ndf_local, ndf;
370
371 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
372
373 #ifdef IS_MPI
374 MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
375 #else
376 ndf = ndf_local;
377 #endif
378
379 ndf = ndf - 3;
380
381 return ndf;
382 }
383
384 int SimInfo::getNDFraw() {
385 int ndfRaw_local, ndfRaw;
386
387 // Raw degrees of freedom that we have to set
388 ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
389
390 #ifdef IS_MPI
391 MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
392 #else
393 ndfRaw = ndfRaw_local;
394 #endif
395
396 return ndfRaw;
397 }
398
399 void SimInfo::refreshSim(){
400
401 simtype fInfo;
402 int isError;
403 int n_global;
404 int* excl;
405
406 fInfo.rrf = 0.0;
407 fInfo.rt = 0.0;
408 fInfo.dielect = 0.0;
409
410 fInfo.rlist = rList;
411 fInfo.rcut = rCut;
412
413 if( useDipole ){
414 fInfo.rrf = ecr;
415 fInfo.rt = ecr - est;
416 if( useReactionField )fInfo.dielect = dielectric;
417 }
418
419 fInfo.SIM_uses_PBC = usePBC;
420 //fInfo.SIM_uses_LJ = 0;
421 fInfo.SIM_uses_LJ = useLJ;
422 fInfo.SIM_uses_sticky = useSticky;
423 //fInfo.SIM_uses_sticky = 0;
424 fInfo.SIM_uses_dipoles = useDipole;
425 //fInfo.SIM_uses_dipoles = 0;
426 //fInfo.SIM_uses_RF = useReactionField;
427 fInfo.SIM_uses_RF = 0;
428 fInfo.SIM_uses_GB = useGB;
429 fInfo.SIM_uses_EAM = useEAM;
430
431 excl = Exclude::getArray();
432
433 #ifdef IS_MPI
434 n_global = mpiSim->getTotAtoms();
435 #else
436 n_global = n_atoms;
437 #endif
438
439 isError = 0;
440
441 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
442 &nGlobalExcludes, globalExcludes, molMembershipArray,
443 &isError );
444
445 if( isError ){
446
447 sprintf( painCave.errMsg,
448 "There was an error setting the simulation information in fortran.\n" );
449 painCave.isFatal = 1;
450 simError();
451 }
452
453 #ifdef IS_MPI
454 sprintf( checkPointMsg,
455 "succesfully sent the simulation information to fortran.\n");
456 MPIcheckPoint();
457 #endif // is_mpi
458
459 this->ndf = this->getNDF();
460 this->ndfRaw = this->getNDFraw();
461
462 }
463