ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.hpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.hpp (file contents):
Revision 621 by gezelter, Wed Jul 16 02:11:02 2003 UTC vs.
Revision 1212 by chrisfen, Tue Jun 1 17:15:43 2004 UTC

# Line 1 | Line 1
1   #ifndef __SIMINFO_H__
2   #define __SIMINFO_H__
3  
4 + #include <map>
5 + #include <string>
6 + #include <vector>
7  
5
8   #include "Atom.hpp"
9 + #include "RigidBody.hpp"
10   #include "Molecule.hpp"
11 + #include "Exclude.hpp"
12 + #include "SkipList.hpp"
13   #include "AbstractClasses.hpp"
14   #include "MakeStamps.hpp"
15 + #include "SimState.hpp"
16 + #include "Restraints.hpp"
17  
18   #define __C
19   #include "fSimulation.h"
20   #include "fortranWrapDefines.hpp"
21 + #include "GenericData.hpp"
22 + //#include "Minimizer.hpp"
23 + //#include "OOPSEMinimizer.hpp"
24  
25  
26 <
26 > double roundMe( double x );
27 > class OOPSEMinimizer;
28   class SimInfo{
29  
30   public:
31  
32    SimInfo();
33 <  ~SimInfo(){}
33 >  ~SimInfo();
34  
35    int n_atoms; // the number of atoms
36    Atom **atoms; // the array of atom objects
37 +
38 +  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
39 +  vector<StuntDouble*> integrableObjects;
40    
41    double tau[9]; // the stress tensor
42  
43 <  unsigned int n_bonds;    // number of bends
44 <  unsigned int n_bends;    // number of bends
45 <  unsigned int n_torsions; // number of torsions
46 <  unsigned int n_oriented; // number of of atoms with orientation
47 <  unsigned int ndf;        // number of actual degrees of freedom
48 <  unsigned int ndfRaw;     // number of settable degrees of freedom
43 >  int n_bonds;    // number of bends
44 >  int n_bends;    // number of bends
45 >  int n_torsions; // number of torsions
46 >  int n_oriented; // number of of atoms with orientation
47 >  int ndf;        // number of actual degrees of freedom
48 >  int ndfRaw;     // number of settable degrees of freedom
49 >  int ndfTrans;   // number of translational degrees of freedom
50 >  int nZconstraints; // the number of zConstraints
51  
52 <  unsigned int setTemp;   // boolean to set the temperature at each sampleTime
52 >  int setTemp;   // boolean to set the temperature at each sampleTime
53 >  int resetIntegrator; // boolean to reset the integrator
54  
55 <  unsigned int n_dipoles; // number of dipoles
39 <  double ecr;             // the electrostatic cutoff radius
40 <  double est;             // the electrostatic skin thickness
41 <  double dielectric;      // the dielectric of the medium for reaction field
55 >  int n_dipoles; // number of dipoles
56  
57 <  int n_exclude;  // the # of pairs excluded from long range forces
58 <  Exclude** excludes;       // the pairs themselves
45 <
57 >  int n_exclude;
58 >  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
59    int nGlobalExcludes;
60    int* globalExcludes; // same as above, but these guys participate in
61                         // no long range forces.
# Line 52 | Line 65 | class SimInfo{ (public)
65  
66    int n_constraints; // the number of constraints on the system
67  
68 <  unsigned int n_SRI;   // the number of short range interactions
68 >  int n_SRI;   // the number of short range interactions
69  
70    double lrPot; // the potential energy from the long range calculations.
71  
# Line 70 | Line 83 | class SimInfo{ (public)
83    int orthoRhombic;
84    
85  
86 +  double dielectric;      // the dielectric of the medium for reaction field
87  
74  double rList, rCut; // variables for the neighborlist
88    
89    int usePBC; // whether we use periodic boundry conditions.
90    int useLJ;
91    int useSticky;
92 <  int useDipole;
92 >  int useCharges;
93 >  int useDipoles;
94    int useReactionField;
95    int useGB;
96    int useEAM;
97 <  
97 >  bool haveCutoffGroups;
98 >  bool useInitXSstate;
99 >  double orthoTolerance;
100  
101    double dt, run_time;           // the time step and total time
102    double sampleTime, statusTime; // the position and energy dump frequencies
103    double target_temp;            // the target temperature of the system
104    double thermalTime;            // the temp kick interval
105 +  double currentTime;            // Used primarily for correlation Functions
106 +  double resetTime;              // Use to reset the integrator periodically
107  
108    int n_mol;           // n_molecules;
109    Molecule* molecules; // the array of molecules
110    
111 <  int nComponents;           // the number of componentsin the system
111 >  int nComponents;           // the number of components in the system
112    int* componentsNmol;       // the number of molecules of each component
113    MoleculeStamp** compStamps;// the stamps matching the components
114    LinkedMolStamp* headStamp; // list of stamps used in the simulation
# Line 100 | Line 118 | class SimInfo{ (public)
118    char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
119    BaseIntegrator *the_integrator; // the integrator of the simulation
120  
121 +  OOPSEMinimizer* the_minimizer; // the energy minimizer
122 +  Restraints* restraint;
123 +  bool has_minimizer;
124 +
125    char finalName[300];  // the name of the eor file to be written
126    char sampleName[300]; // the name of the dump file to be written
127    char statusName[300]; // the name of the stat file to be written
128 +  char rawPotName[300];  // the name of the raw file to be written
129  
130 +  int seed;                    //seed for random number generator
131  
132 +  int useSolidThermInt;  // is solid-state thermodynamic integration being used
133 +  int useLiquidThermInt; // is liquid thermodynamic integration being used
134 +  double thermIntLambda; // lambda for TI
135 +  double thermIntK;      // power of lambda for TI
136 +  double vRaw;           // unperturbed potential for TI
137 +  double vHarm;          // harmonic potential for TI
138 +  int i;                 // just an int
139 +
140 +  vector<double> mfact;
141 +  int ngroup;
142 +  vector<int> groupList;
143 +  vector<int> groupStart;
144 +  
145    // refreshes the sim if things get changed (load balanceing, volume
146    // adjustment, etc.)
147  
# Line 113 | Line 150 | class SimInfo{ (public)
150  
151    // sets the internal function pointer to fortran.
152  
153 <  void setInternal( void (*fSetup) setFortranSimList,
154 <                    void (*fBox) setFortranBoxList ){
153 >  void setInternal( setFortranSim_TD fSetup,
154 >                    setFortranBox_TD fBox,
155 >                    notifyFortranCutOff_TD fCut){
156      setFsimulation = fSetup;
157      setFortranBoxSize = fBox;
158 +    notifyFortranCutOffs = fCut;
159    }
160  
161    int getNDF();
162    int getNDFraw();
163 <
163 >  int getNDFtranslational();
164 >  int getTotIntegrableObjects();
165    void setBox( double newBox[3] );
166    void setBoxM( double newBox[3][3] );
167    void getBoxM( double theBox[3][3] );
168    void scaleBox( double scale );
169 +  
170 +  void setDefaultRcut( double theRcut );
171 +  void setDefaultRcut( double theRcut, double theRsw );
172 +  void checkCutOffs( void );
173  
174 +  double getRcut( void )  { return rCut; }
175 +  double getRlist( void ) { return rList; }
176 +  double getRsw( void )   { return rSw; }
177 +  double getMaxCutoff( void ) { return maxCutoff; }
178 +  
179 +  void setTime( double theTime ) { currentTime = theTime; }
180 +  void incrTime( double the_dt ) { currentTime += the_dt; }
181 +  void decrTime( double the_dt ) { currentTime -= the_dt; }
182 +  double getTime( void ) { return currentTime; }
183 +
184    void wrapVector( double thePos[3] );
185  
186 <  void matMul3(double a[3][3], double b[3][3], double out[3][3]);
133 <  void matVecMul3(double m[3][3], double inVec[3], double outVec[3]);
134 <  void invertMat3(double in[3][3], double out[3][3]);
135 <  void transposeMat3(double in[3][3], double out[3][3]);
136 <  void printMat3(double A[3][3]);
137 <  void printMat9(double A[9]);
138 <  double matDet3(double m[3][3]);
186 >  SimState* getConfiguration( void ) { return myConfiguration; }
187    
188 +  void addProperty(GenericData* prop);
189 +  GenericData* getProperty(const string& propName);
190 +  //vector<GenericData*>& getProperties()  {return properties;}    
191 +
192 +  int getSeed(void) {  return seed; }
193 +  void setSeed(int theSeed) {  seed = theSeed;}
194 +
195   private:
196 +
197 +  SimState* myConfiguration;
198 +
199 +  int boxIsInit, haveRcut, haveRsw;
200 +
201 +  double rList, rCut; // variables for the neighborlist
202 +  double rSw;         // the switching radius
203 +
204 +  double maxCutoff;
205 +
206 +  double distXY;
207 +  double distYZ;
208 +  double distZX;
209    
210    void calcHmatInv( void );
211    void calcBoxL();
212 +  double calcMaxCutOff();
213  
214    // private function to initialize the fortran side of the simulation
215 <  void (*setFsimulation) setFortranSimList;
215 >  setFortranSim_TD setFsimulation;
216  
217 <  void (*setFortranBoxSize) setFortranBoxList;
217 >  setFortranBox_TD setFortranBoxSize;
218 >  
219 >  notifyFortranCutOff_TD notifyFortranCutOffs;
220 >  
221 >  //Addtional Properties of SimInfo
222 >  map<string, GenericData*> properties;
223 >
224   };
225  
226 + void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,
227 +                                                          vector<int>& groupList, vector<int>& groupStart);
228  
152
229   #endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines