--- trunk/OOPSE/libmdtools/SimInfo.hpp 2003/07/22 16:41:08 644 +++ trunk/OOPSE/libmdtools/SimInfo.hpp 2004/06/01 17:15:43 1212 @@ -1,46 +1,61 @@ #ifndef __SIMINFO_H__ #define __SIMINFO_H__ +#include +#include +#include - #include "Atom.hpp" +#include "RigidBody.hpp" #include "Molecule.hpp" +#include "Exclude.hpp" +#include "SkipList.hpp" #include "AbstractClasses.hpp" #include "MakeStamps.hpp" +#include "SimState.hpp" +#include "Restraints.hpp" #define __C #include "fSimulation.h" #include "fortranWrapDefines.hpp" +#include "GenericData.hpp" +//#include "Minimizer.hpp" +//#include "OOPSEMinimizer.hpp" - +double roundMe( double x ); +class OOPSEMinimizer; class SimInfo{ public: SimInfo(); - ~SimInfo(){} + ~SimInfo(); int n_atoms; // the number of atoms Atom **atoms; // the array of atom objects + + vector rigidBodies; // A vector of rigid bodies + vector integrableObjects; double tau[9]; // the stress tensor - unsigned int n_bonds; // number of bends - unsigned int n_bends; // number of bends - unsigned int n_torsions; // number of torsions - unsigned int n_oriented; // number of of atoms with orientation - unsigned int ndf; // number of actual degrees of freedom - unsigned int ndfRaw; // number of settable degrees of freedom + int n_bonds; // number of bends + int n_bends; // number of bends + int n_torsions; // number of torsions + int n_oriented; // number of of atoms with orientation + int ndf; // number of actual degrees of freedom + int ndfRaw; // number of settable degrees of freedom + int ndfTrans; // number of translational degrees of freedom + int nZconstraints; // the number of zConstraints - unsigned int setTemp; // boolean to set the temperature at each sampleTime + int setTemp; // boolean to set the temperature at each sampleTime + int resetIntegrator; // boolean to reset the integrator - unsigned int n_dipoles; // number of dipoles + int n_dipoles; // number of dipoles - - int n_exclude; // the # of pairs excluded from long range forces - Exclude** excludes; // the pairs themselves - + int n_exclude; + Exclude* excludes; // the exclude list for ignoring pairs in fortran int nGlobalExcludes; int* globalExcludes; // same as above, but these guys participate in // no long range forces. @@ -50,7 +65,7 @@ class SimInfo{ (public) int n_constraints; // the number of constraints on the system - unsigned int n_SRI; // the number of short range interactions + int n_SRI; // the number of short range interactions double lrPot; // the potential energy from the long range calculations. @@ -74,22 +89,26 @@ class SimInfo{ (public) int usePBC; // whether we use periodic boundry conditions. int useLJ; int useSticky; - int useDipole; + int useCharges; + int useDipoles; int useReactionField; int useGB; int useEAM; - + bool haveCutoffGroups; + bool useInitXSstate; + double orthoTolerance; double dt, run_time; // the time step and total time double sampleTime, statusTime; // the position and energy dump frequencies double target_temp; // the target temperature of the system double thermalTime; // the temp kick interval double currentTime; // Used primarily for correlation Functions + double resetTime; // Use to reset the integrator periodically int n_mol; // n_molecules; Molecule* molecules; // the array of molecules - int nComponents; // the number of componentsin the system + int nComponents; // the number of components in the system int* componentsNmol; // the number of molecules of each component MoleculeStamp** compStamps;// the stamps matching the components LinkedMolStamp* headStamp; // list of stamps used in the simulation @@ -99,11 +118,30 @@ class SimInfo{ (public) char mixingRule[100]; // the mixing rules for Lennard jones/van der walls BaseIntegrator *the_integrator; // the integrator of the simulation + OOPSEMinimizer* the_minimizer; // the energy minimizer + Restraints* restraint; + bool has_minimizer; + char finalName[300]; // the name of the eor file to be written char sampleName[300]; // the name of the dump file to be written char statusName[300]; // the name of the stat file to be written + char rawPotName[300]; // the name of the raw file to be written + int seed; //seed for random number generator + int useSolidThermInt; // is solid-state thermodynamic integration being used + int useLiquidThermInt; // is liquid thermodynamic integration being used + double thermIntLambda; // lambda for TI + double thermIntK; // power of lambda for TI + double vRaw; // unperturbed potential for TI + double vHarm; // harmonic potential for TI + int i; // just an int + + vector mfact; + int ngroup; + vector groupList; + vector groupStart; + // refreshes the sim if things get changed (load balanceing, volume // adjustment, etc.) @@ -112,9 +150,9 @@ class SimInfo{ (public) // sets the internal function pointer to fortran. - void setInternal( void (*fSetup) setFortranSimList, - void (*fBox) setFortranBoxList, - void (*fCut) notifyFortranCutOffList ){ + void setInternal( setFortranSim_TD fSetup, + setFortranBox_TD fBox, + notifyFortranCutOff_TD fCut){ setFsimulation = fSetup; setFortranBoxSize = fBox; notifyFortranCutOffs = fCut; @@ -122,62 +160,70 @@ class SimInfo{ (public) int getNDF(); int getNDFraw(); - + int getNDFtranslational(); + int getTotIntegrableObjects(); void setBox( double newBox[3] ); void setBoxM( double newBox[3][3] ); void getBoxM( double theBox[3][3] ); void scaleBox( double scale ); - void setRcut( double theRcut ); - void setEcr( double theEcr ); - void setEcr( double theEcr, double theEst ); + void setDefaultRcut( double theRcut ); + void setDefaultRcut( double theRcut, double theRsw ); + void checkCutOffs( void ); double getRcut( void ) { return rCut; } double getRlist( void ) { return rList; } - double getEcr( void ) { return ecr; } - double getEst( void ) { return est; } - + double getRsw( void ) { return rSw; } + double getMaxCutoff( void ) { return maxCutoff; } + void setTime( double theTime ) { currentTime = theTime; } - void incrTime( double dt ) { currentTime += dt; } - void decrTime( double dt ) { currentTime -= dt; } + void incrTime( double the_dt ) { currentTime += the_dt; } + void decrTime( double the_dt ) { currentTime -= the_dt; } double getTime( void ) { return currentTime; } void wrapVector( double thePos[3] ); - void matMul3(double a[3][3], double b[3][3], double out[3][3]); - void matVecMul3(double m[3][3], double inVec[3], double outVec[3]); - void invertMat3(double in[3][3], double out[3][3]); - void transposeMat3(double in[3][3], double out[3][3]); - void printMat3(double A[3][3]); - void printMat9(double A[9]); - double matDet3(double m[3][3]); + SimState* getConfiguration( void ) { return myConfiguration; } + void addProperty(GenericData* prop); + GenericData* getProperty(const string& propName); + //vector& getProperties() {return properties;} + + int getSeed(void) { return seed; } + void setSeed(int theSeed) { seed = theSeed;} + private: - double origRcut, origEcr; - int boxIsInit, haveOrigRcut, haveOrigEcr; + SimState* myConfiguration; - double oldEcr; - double oldRcut; + int boxIsInit, haveRcut, haveRsw; double rList, rCut; // variables for the neighborlist - double ecr; // the electrostatic cutoff radius - double est; // the electrostatic skin thickness + double rSw; // the switching radius + double maxCutoff; + + double distXY; + double distYZ; + double distZX; void calcHmatInv( void ); void calcBoxL(); - void checkCutOffs( void ); + double calcMaxCutOff(); // private function to initialize the fortran side of the simulation - void (*setFsimulation) setFortranSimList; + setFortranSim_TD setFsimulation; - void (*setFortranBoxSize) setFortranBoxList; + setFortranBox_TD setFortranBoxSize; - void (*notifyFortranCutOffs) notifyFortranCutOffList; + notifyFortranCutOff_TD notifyFortranCutOffs; + + //Addtional Properties of SimInfo + map properties; }; +void getFortranGroupArray(SimInfo* info, vector& mfact, int& ngroup, + vector& groupList, vector& groupStart); - #endif