ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Symplectic.cpp
Revision: 486
Committed: Thu Apr 10 16:22:00 2003 UTC (21 years, 3 months ago) by mmeineke
File size: 17319 byte(s)
Log Message:
fixed a bug in symplectic, where presure was only being calculated the first time through.

File Contents

# User Rev Content
1 mmeineke 377 #include <iostream>
2     #include <cstdlib>
3    
4     #include "Integrator.hpp"
5     #include "Thermo.hpp"
6     #include "ReadWrite.hpp"
7     #include "ForceFields.hpp"
8 gezelter 466 #include "ExtendedSystem.hpp"
9 mmeineke 377 #include "simError.h"
10    
11     extern "C"{
12    
13     void v_constrain_a_( double &dt, int &n_atoms, double* mass,
14     double* Rx, double* Ry, double* Rz,
15     double* Vx, double* Vy, double* Vz,
16     double* Fx, double* Fy, double* Fz,
17     int &n_constrained, double *constr_sqr,
18     int* constr_i, int* constr_j,
19     double &box_x, double &box_y, double &box_z );
20    
21     void v_constrain_b_( double &dt, int &n_atoms, double* mass,
22     double* Rx, double* Ry, double* Rz,
23     double* Vx, double* Vy, double* Vz,
24     double* Fx, double* Fy, double* Fz,
25     double &Kinetic,
26     int &n_constrained, double *constr_sqr,
27     int* constr_i, int* constr_j,
28     double &box_x, double &box_y, double &box_z );
29     }
30    
31    
32    
33    
34 gezelter 466 Symplectic::Symplectic( SimInfo* the_entry_plug, ForceFields* the_ff,
35     ExtendedSystem* the_es ){
36 mmeineke 377 entry_plug = the_entry_plug;
37     myFF = the_ff;
38 gezelter 466 myES = the_es;
39 mmeineke 377 isFirst = 1;
40    
41 mmeineke 423 molecules = entry_plug->molecules;
42     nMols = entry_plug->n_mol;
43 mmeineke 377
44     // give a little love back to the SimInfo object
45    
46     if( entry_plug->the_integrator != NULL ) delete entry_plug->the_integrator;
47     entry_plug->the_integrator = this;
48    
49     // grab the masses
50    
51     mass = new double[entry_plug->n_atoms];
52     for(int i = 0; i < entry_plug->n_atoms; i++){
53     mass[i] = entry_plug->atoms[i]->getMass();
54 gezelter 466 }
55 mmeineke 377
56     // check for constraints
57    
58     is_constrained = 0;
59    
60     Constraint *temp_con;
61     Constraint *dummy_plug;
62 mmeineke 423 temp_con = new Constraint[entry_plug->n_SRI];
63 mmeineke 377 n_constrained = 0;
64     int constrained = 0;
65    
66 mmeineke 423 SRI** theArray;
67     for(int i = 0; i < nMols; i++){
68 mmeineke 377
69 mmeineke 428 theArray = (SRI**) molecules[i].getMyBonds();
70     for(int j=0; j<molecules[i].getNBonds(); j++){
71 mmeineke 377
72 mmeineke 423 constrained = theArray[j]->is_constrained();
73    
74     if(constrained){
75    
76     dummy_plug = theArray[j]->get_constraint();
77 mmeineke 428 temp_con[n_constrained].set_a( dummy_plug->get_a() );
78     temp_con[n_constrained].set_b( dummy_plug->get_b() );
79     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
80 mmeineke 423
81 mmeineke 428 n_constrained++;
82 mmeineke 423 constrained = 0;
83     }
84     }
85 mmeineke 377
86 mmeineke 428 theArray = (SRI**) molecules[i].getMyBends();
87     for(int j=0; j<molecules[i].getNBends(); j++){
88 mmeineke 423
89     constrained = theArray[j]->is_constrained();
90    
91     if(constrained){
92    
93     dummy_plug = theArray[j]->get_constraint();
94 mmeineke 428 temp_con[n_constrained].set_a( dummy_plug->get_a() );
95     temp_con[n_constrained].set_b( dummy_plug->get_b() );
96     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
97 mmeineke 423
98 mmeineke 428 n_constrained++;
99 mmeineke 423 constrained = 0;
100     }
101 mmeineke 377 }
102 mmeineke 423
103 mmeineke 428 theArray = (SRI**) molecules[i].getMyTorsions();
104     for(int j=0; j<molecules[i].getNTorsions(); j++){
105 mmeineke 423
106     constrained = theArray[j]->is_constrained();
107    
108     if(constrained){
109    
110     dummy_plug = theArray[j]->get_constraint();
111 mmeineke 428 temp_con[n_constrained].set_a( dummy_plug->get_a() );
112     temp_con[n_constrained].set_b( dummy_plug->get_b() );
113     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
114 mmeineke 423
115 mmeineke 428 n_constrained++;
116 mmeineke 423 constrained = 0;
117     }
118     }
119 mmeineke 377 }
120    
121     if(n_constrained > 0){
122    
123     is_constrained = 1;
124     constrained_i = new int[n_constrained];
125     constrained_j = new int[n_constrained];
126     constrained_dsqr = new double[n_constrained];
127    
128     for( int i = 0; i < n_constrained; i++){
129    
130     /* add 1 to the index for the fortran arrays. */
131    
132     constrained_i[i] = temp_con[i].get_a() + 1;
133     constrained_j[i] = temp_con[i].get_b() + 1;
134     constrained_dsqr[i] = temp_con[i].get_dsqr();
135     }
136     }
137    
138     delete[] temp_con;
139     }
140    
141     Symplectic::~Symplectic() {
142    
143     if( n_constrained ){
144     delete[] constrained_i;
145     delete[] constrained_j;
146     delete[] constrained_dsqr;
147     }
148    
149     }
150    
151    
152     void Symplectic::integrate( void ){
153    
154     const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
155    
156     int i, j; // loop counters
157     int nAtoms = entry_plug->n_atoms; // the number of atoms
158     double kE = 0.0; // the kinetic energy
159     double rot_kE;
160     double trans_kE;
161     int tl; // the time loop conter
162     double dt2; // half the dt
163    
164     double vx, vy, vz; // the velocities
165 chuckv 482 double vx2, vy2, vz2; // the square of the velocities
166 mmeineke 377 double rx, ry, rz; // the postitions
167    
168     double ji[3]; // the body frame angular momentum
169     double jx2, jy2, jz2; // the square of the angular momentums
170     double Tb[3]; // torque in the body frame
171     double angle; // the angle through which to rotate the rotation matrix
172     double A[3][3]; // the rotation matrix
173 gezelter 483 double press[9];
174 mmeineke 377
175     int time;
176    
177     double dt = entry_plug->dt;
178     double runTime = entry_plug->run_time;
179     double sampleTime = entry_plug->sampleTime;
180     double statusTime = entry_plug->statusTime;
181     double thermalTime = entry_plug->thermalTime;
182    
183     int n_loops = (int)( runTime / dt );
184     int sample_n = (int)( sampleTime / dt );
185     int status_n = (int)( statusTime / dt );
186     int vel_n = (int)( thermalTime / dt );
187    
188 gezelter 468 int calcPot, calcStress;
189 mmeineke 377
190 mmeineke 469 Thermo *tStats;
191     StatWriter* e_out;
192     DumpWriter* dump_out;
193 mmeineke 377
194 mmeineke 469 tStats = new Thermo( entry_plug );
195     e_out = new StatWriter( entry_plug );
196     dump_out = new DumpWriter( entry_plug );
197    
198 mmeineke 377 Atom** atoms = entry_plug->atoms;
199     DirectionalAtom* dAtom;
200     dt2 = 0.5 * dt;
201    
202     // initialize the forces the before the first step
203    
204 gezelter 468 myFF->doForces(1,1);
205 mmeineke 377
206     if( entry_plug->setTemp ){
207    
208     tStats->velocitize();
209     }
210    
211     dump_out->writeDump( 0.0 );
212     e_out->writeStat( 0.0 );
213    
214     calcPot = 0;
215    
216 gezelter 475 if (!strcasecmp( entry_plug->ensemble, "NPT")) {
217     calcStress = 1;
218     } else {
219     calcStress = 0;
220     }
221    
222 mmeineke 377 if( n_constrained ){
223    
224     double *Rx = new double[nAtoms];
225     double *Ry = new double[nAtoms];
226     double *Rz = new double[nAtoms];
227    
228     double *Vx = new double[nAtoms];
229     double *Vy = new double[nAtoms];
230     double *Vz = new double[nAtoms];
231    
232     double *Fx = new double[nAtoms];
233     double *Fy = new double[nAtoms];
234     double *Fz = new double[nAtoms];
235    
236    
237     for( tl=0; tl < n_loops; tl++ ){
238 gezelter 475
239     if (!strcasecmp( entry_plug->ensemble, "NVT"))
240 gezelter 477 myES->NoseHooverNVT( dt / 2.0 , tStats->getKinetic() );
241 mmeineke 377
242     for( j=0; j<nAtoms; j++ ){
243    
244     Rx[j] = atoms[j]->getX();
245     Ry[j] = atoms[j]->getY();
246     Rz[j] = atoms[j]->getZ();
247    
248     Vx[j] = atoms[j]->get_vx();
249     Vy[j] = atoms[j]->get_vy();
250     Vz[j] = atoms[j]->get_vz();
251    
252     Fx[j] = atoms[j]->getFx();
253     Fy[j] = atoms[j]->getFy();
254     Fz[j] = atoms[j]->getFz();
255    
256     }
257    
258     v_constrain_a_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
259     Fx, Fy, Fz,
260     n_constrained, constrained_dsqr,
261     constrained_i, constrained_j,
262     entry_plug->box_x,
263     entry_plug->box_y,
264     entry_plug->box_z );
265    
266     for( j=0; j<nAtoms; j++ ){
267    
268     atoms[j]->setX(Rx[j]);
269     atoms[j]->setY(Ry[j]);
270     atoms[j]->setZ(Rz[j]);
271    
272     atoms[j]->set_vx(Vx[j]);
273     atoms[j]->set_vy(Vy[j]);
274     atoms[j]->set_vz(Vz[j]);
275     }
276    
277    
278 chuckv 482 for( i=0; i<nAtoms; i++ ){
279     if( atoms[i]->isDirectional() ){
280 mmeineke 377
281 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
282 mmeineke 377
283 chuckv 482 // get and convert the torque to body frame
284 mmeineke 377
285 chuckv 482 Tb[0] = dAtom->getTx();
286     Tb[1] = dAtom->getTy();
287     Tb[2] = dAtom->getTz();
288 mmeineke 377
289 chuckv 482 dAtom->lab2Body( Tb );
290 mmeineke 377
291 chuckv 482 // get the angular momentum, and propagate a half step
292 mmeineke 377
293 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
294     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
295     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
296 mmeineke 377
297 chuckv 482 // get the atom's rotation matrix
298 mmeineke 377
299 chuckv 482 A[0][0] = dAtom->getAxx();
300     A[0][1] = dAtom->getAxy();
301     A[0][2] = dAtom->getAxz();
302 mmeineke 377
303 chuckv 482 A[1][0] = dAtom->getAyx();
304     A[1][1] = dAtom->getAyy();
305     A[1][2] = dAtom->getAyz();
306 mmeineke 377
307 chuckv 482 A[2][0] = dAtom->getAzx();
308     A[2][1] = dAtom->getAzy();
309     A[2][2] = dAtom->getAzz();
310 mmeineke 377
311    
312 chuckv 482 // use the angular velocities to propagate the rotation matrix a
313     // full time step
314 mmeineke 377
315    
316 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
317     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
318 mmeineke 377
319 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
320     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
321 mmeineke 377
322 chuckv 482 angle = dt * ji[2] / dAtom->getIzz();
323     this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
324 mmeineke 377
325 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
326     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
327 mmeineke 377
328 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
329     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
330 mmeineke 377
331    
332 chuckv 482 dAtom->setA( A );
333     dAtom->setJx( ji[0] );
334     dAtom->setJy( ji[1] );
335     dAtom->setJz( ji[2] );
336     }
337     }
338 mmeineke 377
339     // calculate the forces
340    
341 gezelter 468 myFF->doForces(calcPot, calcStress);
342 mmeineke 377
343     // move b
344    
345     for( j=0; j<nAtoms; j++ ){
346    
347     Rx[j] = atoms[j]->getX();
348     Ry[j] = atoms[j]->getY();
349     Rz[j] = atoms[j]->getZ();
350    
351     Vx[j] = atoms[j]->get_vx();
352     Vy[j] = atoms[j]->get_vy();
353     Vz[j] = atoms[j]->get_vz();
354    
355     Fx[j] = atoms[j]->getFx();
356     Fy[j] = atoms[j]->getFy();
357     Fz[j] = atoms[j]->getFz();
358     }
359    
360     v_constrain_b_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
361     Fx, Fy, Fz,
362     kE, n_constrained, constrained_dsqr,
363     constrained_i, constrained_j,
364     entry_plug->box_x,
365     entry_plug->box_y,
366     entry_plug->box_z );
367    
368     for( j=0; j<nAtoms; j++ ){
369    
370     atoms[j]->setX(Rx[j]);
371     atoms[j]->setY(Ry[j]);
372     atoms[j]->setZ(Rz[j]);
373    
374     atoms[j]->set_vx(Vx[j]);
375     atoms[j]->set_vy(Vy[j]);
376     atoms[j]->set_vz(Vz[j]);
377     }
378    
379 chuckv 482 for( i=0; i< nAtoms; i++ ){
380 mmeineke 377
381 chuckv 482 if( atoms[i]->isDirectional() ){
382 mmeineke 377
383 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
384 mmeineke 377
385 chuckv 482 // get and convert the torque to body frame
386 mmeineke 377
387 chuckv 482 Tb[0] = dAtom->getTx();
388     Tb[1] = dAtom->getTy();
389     Tb[2] = dAtom->getTz();
390 mmeineke 377
391 chuckv 482 dAtom->lab2Body( Tb );
392 mmeineke 377
393 chuckv 482 // get the angular momentum, and complete the angular momentum
394     // half step
395 mmeineke 377
396 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
397     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
398     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
399 mmeineke 377
400 chuckv 482 dAtom->setJx( ji[0] );
401     dAtom->setJy( ji[1] );
402     dAtom->setJz( ji[2] );
403     }
404     }
405 mmeineke 377
406 gezelter 475
407     if (!strcasecmp( entry_plug->ensemble, "NVT"))
408 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
409 gezelter 475
410 gezelter 483 if (!strcasecmp( entry_plug->ensemble, "NPT") ) {
411     tStats->getPressureTensor(press);
412 gezelter 475 myES->NoseHooverAndersonNPT( dt,
413     tStats->getKinetic(),
414 gezelter 483 press);
415     }
416 gezelter 475
417 mmeineke 377 time = tl + 1;
418    
419     if( entry_plug->setTemp ){
420     if( !(time % vel_n) ) tStats->velocitize();
421     }
422     if( !(time % sample_n) ) dump_out->writeDump( time * dt );
423 gezelter 468 if( !((time+1) % status_n) ) {
424     calcPot = 1;
425 mmeineke 486 calcStress = 1;
426 gezelter 468 }
427     if( !(time % status_n) ){
428     e_out->writeStat( time * dt );
429     calcPot = 0;
430 mmeineke 486 if (!strcasecmp(entry_plug->ensemble, "NPT")) calcStress = 1;
431     else calcStress = 0;
432 gezelter 468 }
433 mmeineke 377 }
434     }
435     else{
436    
437     for( tl=0; tl<n_loops; tl++ ){
438    
439     kE = 0.0;
440     rot_kE= 0.0;
441     trans_kE = 0.0;
442 gezelter 475
443     if (!strcasecmp( entry_plug->ensemble, "NVT"))
444 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
445 mmeineke 377
446     for( i=0; i<nAtoms; i++ ){
447    
448     // velocity half step
449    
450     vx = atoms[i]->get_vx() +
451     ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
452     vy = atoms[i]->get_vy() +
453     ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
454     vz = atoms[i]->get_vz() +
455     ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
456    
457     // position whole step
458    
459     rx = atoms[i]->getX() + dt * vx;
460     ry = atoms[i]->getY() + dt * vy;
461     rz = atoms[i]->getZ() + dt * vz;
462    
463     atoms[i]->setX( rx );
464     atoms[i]->setY( ry );
465     atoms[i]->setZ( rz );
466    
467     atoms[i]->set_vx( vx );
468     atoms[i]->set_vy( vy );
469     atoms[i]->set_vz( vz );
470    
471 chuckv 482 if( atoms[i]->isDirectional() ){
472 mmeineke 377
473 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
474 mmeineke 377
475 chuckv 482 // get and convert the torque to body frame
476 mmeineke 377
477 chuckv 482 Tb[0] = dAtom->getTx();
478     Tb[1] = dAtom->getTy();
479     Tb[2] = dAtom->getTz();
480 mmeineke 377
481 chuckv 482 dAtom->lab2Body( Tb );
482 mmeineke 377
483 chuckv 482 // get the angular momentum, and propagate a half step
484 mmeineke 377
485 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
486     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
487     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
488 mmeineke 377
489 chuckv 482 // get the atom's rotation matrix
490 mmeineke 377
491 chuckv 482 A[0][0] = dAtom->getAxx();
492     A[0][1] = dAtom->getAxy();
493     A[0][2] = dAtom->getAxz();
494 mmeineke 377
495 chuckv 482 A[1][0] = dAtom->getAyx();
496     A[1][1] = dAtom->getAyy();
497     A[1][2] = dAtom->getAyz();
498 mmeineke 377
499 chuckv 482 A[2][0] = dAtom->getAzx();
500     A[2][1] = dAtom->getAzy();
501     A[2][2] = dAtom->getAzz();
502 mmeineke 377
503    
504 chuckv 482 // use the angular velocities to propagate the rotation matrix a
505     // full time step
506 mmeineke 377
507    
508 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
509     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
510 mmeineke 377
511 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
512     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
513 mmeineke 377
514 chuckv 482 angle = dt * ji[2] / dAtom->getIzz();
515     this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
516 mmeineke 377
517 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
518     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
519 mmeineke 377
520 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
521     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
522 mmeineke 377
523    
524 chuckv 482 dAtom->setA( A );
525     dAtom->setJx( ji[0] );
526     dAtom->setJy( ji[1] );
527     dAtom->setJz( ji[2] );
528     }
529 mmeineke 377 }
530    
531     // calculate the forces
532    
533 gezelter 468 myFF->doForces(calcPot,calcStress);
534 mmeineke 377
535     for( i=0; i< nAtoms; i++ ){
536    
537     // complete the velocity half step
538    
539     vx = atoms[i]->get_vx() +
540     ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
541     vy = atoms[i]->get_vy() +
542     ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
543     vz = atoms[i]->get_vz() +
544     ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
545    
546     atoms[i]->set_vx( vx );
547     atoms[i]->set_vy( vy );
548     atoms[i]->set_vz( vz );
549    
550 chuckv 482 vx2 = vx * vx;
551     vy2 = vy * vy;
552     vz2 = vz * vz;
553 mmeineke 377
554 chuckv 482 if( atoms[i]->isDirectional() ){
555 mmeineke 377
556 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
557 mmeineke 377
558 chuckv 482 // get and convert the torque to body frame
559 mmeineke 377
560 chuckv 482 Tb[0] = dAtom->getTx();
561     Tb[1] = dAtom->getTy();
562     Tb[2] = dAtom->getTz();
563 mmeineke 377
564 chuckv 482 dAtom->lab2Body( Tb );
565 mmeineke 377
566 chuckv 482 // get the angular momentum, and complete the angular momentum
567     // half step
568 mmeineke 377
569 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
570     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
571     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
572 mmeineke 377
573 chuckv 482 jx2 = ji[0] * ji[0];
574     jy2 = ji[1] * ji[1];
575     jz2 = ji[2] * ji[2];
576 mmeineke 377
577 chuckv 482 rot_kE += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
578     + (jz2 / dAtom->getIzz());
579 mmeineke 377
580 chuckv 482 dAtom->setJx( ji[0] );
581     dAtom->setJy( ji[1] );
582     dAtom->setJz( ji[2] );
583 mmeineke 486 }
584    
585 mmeineke 377 }
586 gezelter 475
587     if (!strcasecmp( entry_plug->ensemble, "NVT"))
588 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
589 gezelter 475
590 gezelter 483 if (!strcasecmp( entry_plug->ensemble, "NPT") ) {
591     tStats->getPressureTensor(press);
592 gezelter 475 myES->NoseHooverAndersonNPT( dt,
593     tStats->getKinetic(),
594 gezelter 483 press);
595     }
596 gezelter 475
597 mmeineke 377 time = tl + 1;
598    
599     if( entry_plug->setTemp ){
600     if( !(time % vel_n) ) tStats->velocitize();
601     }
602     if( !(time % sample_n) ) dump_out->writeDump( time * dt );
603 gezelter 468 if( !((time+1) % status_n) ) {
604     calcPot = 1;
605 mmeineke 486 calcStress = 1;
606 gezelter 468 }
607     if( !(time % status_n) ){
608     e_out->writeStat( time * dt );
609     calcPot = 0;
610 mmeineke 486 if (!strcasecmp(entry_plug->ensemble, "NPT")) calcStress = 1;
611     else calcStress = 0;
612 gezelter 468 }
613 mmeineke 377 }
614     }
615    
616     dump_out->writeFinal();
617    
618     delete dump_out;
619     delete e_out;
620     }
621    
622     void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3],
623     double A[3][3] ){
624    
625     int i,j,k;
626     double sinAngle;
627     double cosAngle;
628     double angleSqr;
629     double angleSqrOver4;
630     double top, bottom;
631     double rot[3][3];
632     double tempA[3][3];
633     double tempJ[3];
634    
635     // initialize the tempA
636    
637     for(i=0; i<3; i++){
638     for(j=0; j<3; j++){
639 mmeineke 443 tempA[j][i] = A[i][j];
640 mmeineke 377 }
641     }
642    
643     // initialize the tempJ
644    
645     for( i=0; i<3; i++) tempJ[i] = ji[i];
646    
647     // initalize rot as a unit matrix
648    
649     rot[0][0] = 1.0;
650     rot[0][1] = 0.0;
651     rot[0][2] = 0.0;
652    
653     rot[1][0] = 0.0;
654     rot[1][1] = 1.0;
655     rot[1][2] = 0.0;
656    
657     rot[2][0] = 0.0;
658     rot[2][1] = 0.0;
659     rot[2][2] = 1.0;
660    
661     // use a small angle aproximation for sin and cosine
662    
663     angleSqr = angle * angle;
664     angleSqrOver4 = angleSqr / 4.0;
665     top = 1.0 - angleSqrOver4;
666     bottom = 1.0 + angleSqrOver4;
667    
668     cosAngle = top / bottom;
669     sinAngle = angle / bottom;
670    
671     rot[axes1][axes1] = cosAngle;
672     rot[axes2][axes2] = cosAngle;
673    
674     rot[axes1][axes2] = sinAngle;
675     rot[axes2][axes1] = -sinAngle;
676    
677     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
678    
679     for(i=0; i<3; i++){
680     ji[i] = 0.0;
681     for(k=0; k<3; k++){
682     ji[i] += rot[i][k] * tempJ[k];
683     }
684     }
685    
686     // rotate the Rotation matrix acording to:
687     // A[][] = A[][] * transpose(rot[][])
688    
689    
690     // NOte for as yet unknown reason, we are setting the performing the
691     // calculation as:
692     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
693    
694     for(i=0; i<3; i++){
695     for(j=0; j<3; j++){
696     A[j][i] = 0.0;
697     for(k=0; k<3; k++){
698 mmeineke 443 A[j][i] += tempA[i][k] * rot[j][k];
699 mmeineke 377 }
700     }
701     }
702     }