ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Symplectic.cpp
Revision: 497
Committed: Mon Apr 14 21:16:37 2003 UTC (21 years, 5 months ago) by chuckv
File size: 17321 byte(s)
Log Message:
Fixed ordering on NVT calculation in integrators.

File Contents

# User Rev Content
1 mmeineke 377 #include <iostream>
2     #include <cstdlib>
3    
4     #include "Integrator.hpp"
5     #include "Thermo.hpp"
6     #include "ReadWrite.hpp"
7     #include "ForceFields.hpp"
8 gezelter 466 #include "ExtendedSystem.hpp"
9 mmeineke 377 #include "simError.h"
10    
11     extern "C"{
12    
13     void v_constrain_a_( double &dt, int &n_atoms, double* mass,
14     double* Rx, double* Ry, double* Rz,
15     double* Vx, double* Vy, double* Vz,
16     double* Fx, double* Fy, double* Fz,
17     int &n_constrained, double *constr_sqr,
18     int* constr_i, int* constr_j,
19     double &box_x, double &box_y, double &box_z );
20    
21     void v_constrain_b_( double &dt, int &n_atoms, double* mass,
22     double* Rx, double* Ry, double* Rz,
23     double* Vx, double* Vy, double* Vz,
24     double* Fx, double* Fy, double* Fz,
25     double &Kinetic,
26     int &n_constrained, double *constr_sqr,
27     int* constr_i, int* constr_j,
28     double &box_x, double &box_y, double &box_z );
29     }
30    
31    
32    
33    
34 gezelter 466 Symplectic::Symplectic( SimInfo* the_entry_plug, ForceFields* the_ff,
35     ExtendedSystem* the_es ){
36 mmeineke 377 entry_plug = the_entry_plug;
37     myFF = the_ff;
38 gezelter 466 myES = the_es;
39 mmeineke 377 isFirst = 1;
40    
41 mmeineke 423 molecules = entry_plug->molecules;
42     nMols = entry_plug->n_mol;
43 mmeineke 377
44     // give a little love back to the SimInfo object
45    
46     if( entry_plug->the_integrator != NULL ) delete entry_plug->the_integrator;
47     entry_plug->the_integrator = this;
48    
49     // grab the masses
50    
51     mass = new double[entry_plug->n_atoms];
52     for(int i = 0; i < entry_plug->n_atoms; i++){
53     mass[i] = entry_plug->atoms[i]->getMass();
54 gezelter 466 }
55 mmeineke 377
56     // check for constraints
57    
58     is_constrained = 0;
59    
60     Constraint *temp_con;
61     Constraint *dummy_plug;
62 mmeineke 423 temp_con = new Constraint[entry_plug->n_SRI];
63 mmeineke 377 n_constrained = 0;
64     int constrained = 0;
65    
66 mmeineke 423 SRI** theArray;
67     for(int i = 0; i < nMols; i++){
68 mmeineke 377
69 mmeineke 428 theArray = (SRI**) molecules[i].getMyBonds();
70     for(int j=0; j<molecules[i].getNBonds(); j++){
71 mmeineke 377
72 mmeineke 423 constrained = theArray[j]->is_constrained();
73    
74     if(constrained){
75    
76     dummy_plug = theArray[j]->get_constraint();
77 mmeineke 428 temp_con[n_constrained].set_a( dummy_plug->get_a() );
78     temp_con[n_constrained].set_b( dummy_plug->get_b() );
79     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
80 mmeineke 423
81 mmeineke 428 n_constrained++;
82 mmeineke 423 constrained = 0;
83     }
84     }
85 mmeineke 377
86 mmeineke 428 theArray = (SRI**) molecules[i].getMyBends();
87     for(int j=0; j<molecules[i].getNBends(); j++){
88 mmeineke 423
89     constrained = theArray[j]->is_constrained();
90    
91     if(constrained){
92    
93     dummy_plug = theArray[j]->get_constraint();
94 mmeineke 428 temp_con[n_constrained].set_a( dummy_plug->get_a() );
95     temp_con[n_constrained].set_b( dummy_plug->get_b() );
96     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
97 mmeineke 423
98 mmeineke 428 n_constrained++;
99 mmeineke 423 constrained = 0;
100     }
101 mmeineke 377 }
102 mmeineke 423
103 mmeineke 428 theArray = (SRI**) molecules[i].getMyTorsions();
104     for(int j=0; j<molecules[i].getNTorsions(); j++){
105 mmeineke 423
106     constrained = theArray[j]->is_constrained();
107    
108     if(constrained){
109    
110     dummy_plug = theArray[j]->get_constraint();
111 mmeineke 428 temp_con[n_constrained].set_a( dummy_plug->get_a() );
112     temp_con[n_constrained].set_b( dummy_plug->get_b() );
113     temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
114 mmeineke 423
115 mmeineke 428 n_constrained++;
116 mmeineke 423 constrained = 0;
117     }
118     }
119 mmeineke 377 }
120    
121     if(n_constrained > 0){
122    
123     is_constrained = 1;
124     constrained_i = new int[n_constrained];
125     constrained_j = new int[n_constrained];
126     constrained_dsqr = new double[n_constrained];
127    
128     for( int i = 0; i < n_constrained; i++){
129    
130     /* add 1 to the index for the fortran arrays. */
131    
132     constrained_i[i] = temp_con[i].get_a() + 1;
133     constrained_j[i] = temp_con[i].get_b() + 1;
134     constrained_dsqr[i] = temp_con[i].get_dsqr();
135     }
136     }
137    
138     delete[] temp_con;
139     }
140    
141     Symplectic::~Symplectic() {
142    
143     if( n_constrained ){
144     delete[] constrained_i;
145     delete[] constrained_j;
146     delete[] constrained_dsqr;
147     }
148    
149     }
150    
151    
152     void Symplectic::integrate( void ){
153    
154     const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
155    
156     int i, j; // loop counters
157     int nAtoms = entry_plug->n_atoms; // the number of atoms
158     double kE = 0.0; // the kinetic energy
159     double rot_kE;
160     double trans_kE;
161     int tl; // the time loop conter
162     double dt2; // half the dt
163    
164     double vx, vy, vz; // the velocities
165 chuckv 482 double vx2, vy2, vz2; // the square of the velocities
166 mmeineke 377 double rx, ry, rz; // the postitions
167    
168     double ji[3]; // the body frame angular momentum
169     double jx2, jy2, jz2; // the square of the angular momentums
170     double Tb[3]; // torque in the body frame
171     double angle; // the angle through which to rotate the rotation matrix
172     double A[3][3]; // the rotation matrix
173 gezelter 483 double press[9];
174 mmeineke 377
175     int time;
176    
177     double dt = entry_plug->dt;
178     double runTime = entry_plug->run_time;
179     double sampleTime = entry_plug->sampleTime;
180     double statusTime = entry_plug->statusTime;
181     double thermalTime = entry_plug->thermalTime;
182    
183     int n_loops = (int)( runTime / dt );
184     int sample_n = (int)( sampleTime / dt );
185     int status_n = (int)( statusTime / dt );
186     int vel_n = (int)( thermalTime / dt );
187    
188 gezelter 468 int calcPot, calcStress;
189 mmeineke 377
190 mmeineke 469 Thermo *tStats;
191     StatWriter* e_out;
192     DumpWriter* dump_out;
193 mmeineke 377
194 mmeineke 469 tStats = new Thermo( entry_plug );
195     e_out = new StatWriter( entry_plug );
196     dump_out = new DumpWriter( entry_plug );
197    
198 mmeineke 377 Atom** atoms = entry_plug->atoms;
199     DirectionalAtom* dAtom;
200     dt2 = 0.5 * dt;
201    
202     // initialize the forces the before the first step
203    
204 gezelter 468 myFF->doForces(1,1);
205 mmeineke 377
206     if( entry_plug->setTemp ){
207    
208     tStats->velocitize();
209     }
210    
211     dump_out->writeDump( 0.0 );
212     e_out->writeStat( 0.0 );
213    
214     calcPot = 0;
215    
216 gezelter 475 if (!strcasecmp( entry_plug->ensemble, "NPT")) {
217     calcStress = 1;
218     } else {
219     calcStress = 0;
220     }
221    
222 mmeineke 377 if( n_constrained ){
223    
224     double *Rx = new double[nAtoms];
225     double *Ry = new double[nAtoms];
226     double *Rz = new double[nAtoms];
227    
228     double *Vx = new double[nAtoms];
229     double *Vy = new double[nAtoms];
230     double *Vz = new double[nAtoms];
231    
232     double *Fx = new double[nAtoms];
233     double *Fy = new double[nAtoms];
234     double *Fz = new double[nAtoms];
235    
236    
237     for( tl=0; tl < n_loops; tl++ ){
238 gezelter 475
239 mmeineke 377
240     for( j=0; j<nAtoms; j++ ){
241    
242     Rx[j] = atoms[j]->getX();
243     Ry[j] = atoms[j]->getY();
244     Rz[j] = atoms[j]->getZ();
245    
246     Vx[j] = atoms[j]->get_vx();
247     Vy[j] = atoms[j]->get_vy();
248     Vz[j] = atoms[j]->get_vz();
249    
250     Fx[j] = atoms[j]->getFx();
251     Fy[j] = atoms[j]->getFy();
252     Fz[j] = atoms[j]->getFz();
253    
254     }
255    
256     v_constrain_a_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
257     Fx, Fy, Fz,
258     n_constrained, constrained_dsqr,
259     constrained_i, constrained_j,
260     entry_plug->box_x,
261     entry_plug->box_y,
262     entry_plug->box_z );
263    
264     for( j=0; j<nAtoms; j++ ){
265    
266     atoms[j]->setX(Rx[j]);
267     atoms[j]->setY(Ry[j]);
268     atoms[j]->setZ(Rz[j]);
269    
270     atoms[j]->set_vx(Vx[j]);
271     atoms[j]->set_vy(Vy[j]);
272     atoms[j]->set_vz(Vz[j]);
273     }
274    
275    
276 chuckv 482 for( i=0; i<nAtoms; i++ ){
277     if( atoms[i]->isDirectional() ){
278 mmeineke 377
279 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
280 mmeineke 377
281 chuckv 482 // get and convert the torque to body frame
282 mmeineke 377
283 chuckv 482 Tb[0] = dAtom->getTx();
284     Tb[1] = dAtom->getTy();
285     Tb[2] = dAtom->getTz();
286 mmeineke 377
287 chuckv 482 dAtom->lab2Body( Tb );
288 mmeineke 377
289 chuckv 482 // get the angular momentum, and propagate a half step
290 mmeineke 377
291 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
292     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
293     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
294 mmeineke 377
295 chuckv 482 // get the atom's rotation matrix
296 mmeineke 377
297 chuckv 482 A[0][0] = dAtom->getAxx();
298     A[0][1] = dAtom->getAxy();
299     A[0][2] = dAtom->getAxz();
300 mmeineke 377
301 chuckv 482 A[1][0] = dAtom->getAyx();
302     A[1][1] = dAtom->getAyy();
303     A[1][2] = dAtom->getAyz();
304 mmeineke 377
305 chuckv 482 A[2][0] = dAtom->getAzx();
306     A[2][1] = dAtom->getAzy();
307     A[2][2] = dAtom->getAzz();
308 mmeineke 377
309    
310 chuckv 482 // use the angular velocities to propagate the rotation matrix a
311     // full time step
312 mmeineke 377
313    
314 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
315     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
316 mmeineke 377
317 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
318     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
319 mmeineke 377
320 chuckv 482 angle = dt * ji[2] / dAtom->getIzz();
321     this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
322 mmeineke 377
323 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
324     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
325 mmeineke 377
326 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
327     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
328 mmeineke 377
329    
330 chuckv 482 dAtom->setA( A );
331     dAtom->setJx( ji[0] );
332     dAtom->setJy( ji[1] );
333     dAtom->setJz( ji[2] );
334     }
335     }
336 mmeineke 377
337 chuckv 497 if (!strcasecmp( entry_plug->ensemble, "NVT"))
338     myES->NoseHooverNVT( dt / 2.0 , tStats->getKinetic() );
339    
340 mmeineke 377 // calculate the forces
341    
342 gezelter 468 myFF->doForces(calcPot, calcStress);
343 mmeineke 377
344     // move b
345    
346     for( j=0; j<nAtoms; j++ ){
347    
348     Rx[j] = atoms[j]->getX();
349     Ry[j] = atoms[j]->getY();
350     Rz[j] = atoms[j]->getZ();
351    
352     Vx[j] = atoms[j]->get_vx();
353     Vy[j] = atoms[j]->get_vy();
354     Vz[j] = atoms[j]->get_vz();
355    
356     Fx[j] = atoms[j]->getFx();
357     Fy[j] = atoms[j]->getFy();
358     Fz[j] = atoms[j]->getFz();
359     }
360    
361     v_constrain_b_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
362     Fx, Fy, Fz,
363     kE, n_constrained, constrained_dsqr,
364     constrained_i, constrained_j,
365     entry_plug->box_x,
366     entry_plug->box_y,
367     entry_plug->box_z );
368    
369     for( j=0; j<nAtoms; j++ ){
370    
371     atoms[j]->setX(Rx[j]);
372     atoms[j]->setY(Ry[j]);
373     atoms[j]->setZ(Rz[j]);
374    
375     atoms[j]->set_vx(Vx[j]);
376     atoms[j]->set_vy(Vy[j]);
377     atoms[j]->set_vz(Vz[j]);
378     }
379    
380 chuckv 482 for( i=0; i< nAtoms; i++ ){
381 mmeineke 377
382 chuckv 482 if( atoms[i]->isDirectional() ){
383 mmeineke 377
384 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
385 mmeineke 377
386 chuckv 482 // get and convert the torque to body frame
387 mmeineke 377
388 chuckv 482 Tb[0] = dAtom->getTx();
389     Tb[1] = dAtom->getTy();
390     Tb[2] = dAtom->getTz();
391 mmeineke 377
392 chuckv 482 dAtom->lab2Body( Tb );
393 mmeineke 377
394 chuckv 482 // get the angular momentum, and complete the angular momentum
395     // half step
396 mmeineke 377
397 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
398     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
399     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
400 mmeineke 377
401 chuckv 482 dAtom->setJx( ji[0] );
402     dAtom->setJy( ji[1] );
403     dAtom->setJz( ji[2] );
404     }
405     }
406 mmeineke 377
407 gezelter 475
408     if (!strcasecmp( entry_plug->ensemble, "NVT"))
409 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
410 gezelter 475
411 gezelter 483 if (!strcasecmp( entry_plug->ensemble, "NPT") ) {
412     tStats->getPressureTensor(press);
413 gezelter 475 myES->NoseHooverAndersonNPT( dt,
414     tStats->getKinetic(),
415 gezelter 483 press);
416     }
417 gezelter 475
418 mmeineke 377 time = tl + 1;
419    
420     if( entry_plug->setTemp ){
421     if( !(time % vel_n) ) tStats->velocitize();
422     }
423     if( !(time % sample_n) ) dump_out->writeDump( time * dt );
424 gezelter 468 if( !((time+1) % status_n) ) {
425     calcPot = 1;
426 mmeineke 486 calcStress = 1;
427 gezelter 468 }
428     if( !(time % status_n) ){
429     e_out->writeStat( time * dt );
430     calcPot = 0;
431 mmeineke 486 if (!strcasecmp(entry_plug->ensemble, "NPT")) calcStress = 1;
432     else calcStress = 0;
433 gezelter 468 }
434 mmeineke 377 }
435     }
436     else{
437    
438     for( tl=0; tl<n_loops; tl++ ){
439    
440     kE = 0.0;
441     rot_kE= 0.0;
442     trans_kE = 0.0;
443 gezelter 475
444 mmeineke 377 for( i=0; i<nAtoms; i++ ){
445    
446     // velocity half step
447    
448     vx = atoms[i]->get_vx() +
449     ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
450     vy = atoms[i]->get_vy() +
451     ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
452     vz = atoms[i]->get_vz() +
453     ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
454    
455     // position whole step
456    
457     rx = atoms[i]->getX() + dt * vx;
458     ry = atoms[i]->getY() + dt * vy;
459     rz = atoms[i]->getZ() + dt * vz;
460    
461     atoms[i]->setX( rx );
462     atoms[i]->setY( ry );
463     atoms[i]->setZ( rz );
464    
465     atoms[i]->set_vx( vx );
466     atoms[i]->set_vy( vy );
467     atoms[i]->set_vz( vz );
468    
469 chuckv 482 if( atoms[i]->isDirectional() ){
470 mmeineke 377
471 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
472 mmeineke 377
473 chuckv 482 // get and convert the torque to body frame
474 mmeineke 377
475 chuckv 482 Tb[0] = dAtom->getTx();
476     Tb[1] = dAtom->getTy();
477     Tb[2] = dAtom->getTz();
478 mmeineke 377
479 chuckv 482 dAtom->lab2Body( Tb );
480 mmeineke 377
481 chuckv 482 // get the angular momentum, and propagate a half step
482 mmeineke 377
483 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
484     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
485     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
486 mmeineke 377
487 chuckv 482 // get the atom's rotation matrix
488 mmeineke 377
489 chuckv 482 A[0][0] = dAtom->getAxx();
490     A[0][1] = dAtom->getAxy();
491     A[0][2] = dAtom->getAxz();
492 mmeineke 377
493 chuckv 482 A[1][0] = dAtom->getAyx();
494     A[1][1] = dAtom->getAyy();
495     A[1][2] = dAtom->getAyz();
496 mmeineke 377
497 chuckv 482 A[2][0] = dAtom->getAzx();
498     A[2][1] = dAtom->getAzy();
499     A[2][2] = dAtom->getAzz();
500 mmeineke 377
501    
502 chuckv 482 // use the angular velocities to propagate the rotation matrix a
503     // full time step
504 mmeineke 377
505    
506 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
507     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
508 mmeineke 377
509 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
510     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
511 mmeineke 377
512 chuckv 482 angle = dt * ji[2] / dAtom->getIzz();
513     this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
514 mmeineke 377
515 chuckv 482 angle = dt2 * ji[1] / dAtom->getIyy();
516     this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
517 mmeineke 377
518 chuckv 482 angle = dt2 * ji[0] / dAtom->getIxx();
519     this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
520 mmeineke 377
521    
522 chuckv 482 dAtom->setA( A );
523     dAtom->setJx( ji[0] );
524     dAtom->setJy( ji[1] );
525     dAtom->setJz( ji[2] );
526     }
527 mmeineke 377 }
528 chuckv 497
529     if (!strcasecmp( entry_plug->ensemble, "NVT"))
530     myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
531 mmeineke 377
532 chuckv 497
533 mmeineke 377 // calculate the forces
534    
535 gezelter 468 myFF->doForces(calcPot,calcStress);
536 mmeineke 377
537     for( i=0; i< nAtoms; i++ ){
538    
539     // complete the velocity half step
540    
541     vx = atoms[i]->get_vx() +
542     ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
543     vy = atoms[i]->get_vy() +
544     ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
545     vz = atoms[i]->get_vz() +
546     ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
547    
548     atoms[i]->set_vx( vx );
549     atoms[i]->set_vy( vy );
550     atoms[i]->set_vz( vz );
551    
552 chuckv 482 vx2 = vx * vx;
553     vy2 = vy * vy;
554     vz2 = vz * vz;
555 mmeineke 377
556 chuckv 482 if( atoms[i]->isDirectional() ){
557 mmeineke 377
558 chuckv 482 dAtom = (DirectionalAtom *)atoms[i];
559 mmeineke 377
560 chuckv 482 // get and convert the torque to body frame
561 mmeineke 377
562 chuckv 482 Tb[0] = dAtom->getTx();
563     Tb[1] = dAtom->getTy();
564     Tb[2] = dAtom->getTz();
565 mmeineke 377
566 chuckv 482 dAtom->lab2Body( Tb );
567 mmeineke 377
568 chuckv 482 // get the angular momentum, and complete the angular momentum
569     // half step
570 mmeineke 377
571 chuckv 482 ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
572     ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
573     ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
574 mmeineke 377
575 chuckv 482 jx2 = ji[0] * ji[0];
576     jy2 = ji[1] * ji[1];
577     jz2 = ji[2] * ji[2];
578 mmeineke 377
579 chuckv 482 rot_kE += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
580     + (jz2 / dAtom->getIzz());
581 mmeineke 377
582 chuckv 482 dAtom->setJx( ji[0] );
583     dAtom->setJy( ji[1] );
584     dAtom->setJz( ji[2] );
585 mmeineke 486 }
586    
587 mmeineke 377 }
588 gezelter 475
589     if (!strcasecmp( entry_plug->ensemble, "NVT"))
590 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
591 gezelter 475
592 gezelter 483 if (!strcasecmp( entry_plug->ensemble, "NPT") ) {
593     tStats->getPressureTensor(press);
594 gezelter 475 myES->NoseHooverAndersonNPT( dt,
595     tStats->getKinetic(),
596 gezelter 483 press);
597     }
598 gezelter 475
599 mmeineke 377 time = tl + 1;
600    
601     if( entry_plug->setTemp ){
602     if( !(time % vel_n) ) tStats->velocitize();
603     }
604     if( !(time % sample_n) ) dump_out->writeDump( time * dt );
605 gezelter 468 if( !((time+1) % status_n) ) {
606     calcPot = 1;
607 mmeineke 486 calcStress = 1;
608 gezelter 468 }
609     if( !(time % status_n) ){
610     e_out->writeStat( time * dt );
611     calcPot = 0;
612 mmeineke 486 if (!strcasecmp(entry_plug->ensemble, "NPT")) calcStress = 1;
613     else calcStress = 0;
614 gezelter 468 }
615 mmeineke 377 }
616     }
617    
618     dump_out->writeFinal();
619    
620     delete dump_out;
621     delete e_out;
622     }
623    
624     void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3],
625     double A[3][3] ){
626    
627     int i,j,k;
628     double sinAngle;
629     double cosAngle;
630     double angleSqr;
631     double angleSqrOver4;
632     double top, bottom;
633     double rot[3][3];
634     double tempA[3][3];
635     double tempJ[3];
636    
637     // initialize the tempA
638    
639     for(i=0; i<3; i++){
640     for(j=0; j<3; j++){
641 mmeineke 443 tempA[j][i] = A[i][j];
642 mmeineke 377 }
643     }
644    
645     // initialize the tempJ
646    
647     for( i=0; i<3; i++) tempJ[i] = ji[i];
648    
649     // initalize rot as a unit matrix
650    
651     rot[0][0] = 1.0;
652     rot[0][1] = 0.0;
653     rot[0][2] = 0.0;
654    
655     rot[1][0] = 0.0;
656     rot[1][1] = 1.0;
657     rot[1][2] = 0.0;
658    
659     rot[2][0] = 0.0;
660     rot[2][1] = 0.0;
661     rot[2][2] = 1.0;
662    
663     // use a small angle aproximation for sin and cosine
664    
665     angleSqr = angle * angle;
666     angleSqrOver4 = angleSqr / 4.0;
667     top = 1.0 - angleSqrOver4;
668     bottom = 1.0 + angleSqrOver4;
669    
670     cosAngle = top / bottom;
671     sinAngle = angle / bottom;
672    
673     rot[axes1][axes1] = cosAngle;
674     rot[axes2][axes2] = cosAngle;
675    
676     rot[axes1][axes2] = sinAngle;
677     rot[axes2][axes1] = -sinAngle;
678    
679     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
680    
681     for(i=0; i<3; i++){
682     ji[i] = 0.0;
683     for(k=0; k<3; k++){
684     ji[i] += rot[i][k] * tempJ[k];
685     }
686     }
687    
688     // rotate the Rotation matrix acording to:
689     // A[][] = A[][] * transpose(rot[][])
690    
691    
692     // NOte for as yet unknown reason, we are setting the performing the
693     // calculation as:
694     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
695    
696     for(i=0; i<3; i++){
697     for(j=0; j<3; j++){
698     A[j][i] = 0.0;
699     for(k=0; k<3; k++){
700 mmeineke 443 A[j][i] += tempA[i][k] * rot[j][k];
701 mmeineke 377 }
702     }
703     }
704     }