ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Symplectic.cpp
Revision: 472
Committed: Mon Apr 7 21:16:35 2003 UTC (21 years, 3 months ago) by mmeineke
File size: 16755 byte(s)
Log Message:
doing some testing in sticky through Symplectic.

File Contents

# Content
1 #include <iostream>
2 #include <cstdlib>
3
4 #include "Integrator.hpp"
5 #include "Thermo.hpp"
6 #include "ReadWrite.hpp"
7 #include "ForceFields.hpp"
8 #include "ExtendedSystem.hpp"
9 #include "simError.h"
10
11 extern "C"{
12
13 void v_constrain_a_( double &dt, int &n_atoms, double* mass,
14 double* Rx, double* Ry, double* Rz,
15 double* Vx, double* Vy, double* Vz,
16 double* Fx, double* Fy, double* Fz,
17 int &n_constrained, double *constr_sqr,
18 int* constr_i, int* constr_j,
19 double &box_x, double &box_y, double &box_z );
20
21 void v_constrain_b_( double &dt, int &n_atoms, double* mass,
22 double* Rx, double* Ry, double* Rz,
23 double* Vx, double* Vy, double* Vz,
24 double* Fx, double* Fy, double* Fz,
25 double &Kinetic,
26 int &n_constrained, double *constr_sqr,
27 int* constr_i, int* constr_j,
28 double &box_x, double &box_y, double &box_z );
29 }
30
31
32
33
34 Symplectic::Symplectic( SimInfo* the_entry_plug, ForceFields* the_ff,
35 ExtendedSystem* the_es ){
36 entry_plug = the_entry_plug;
37 myFF = the_ff;
38 myES = the_es;
39 isFirst = 1;
40
41 std::cerr<< "calling symplectic constructor\n";
42
43 molecules = entry_plug->molecules;
44 nMols = entry_plug->n_mol;
45
46 // give a little love back to the SimInfo object
47
48 if( entry_plug->the_integrator != NULL ) delete entry_plug->the_integrator;
49 entry_plug->the_integrator = this;
50
51 // grab the masses
52
53 mass = new double[entry_plug->n_atoms];
54 for(int i = 0; i < entry_plug->n_atoms; i++){
55 mass[i] = entry_plug->atoms[i]->getMass();
56 }
57
58 // check for constraints
59
60 is_constrained = 0;
61
62 Constraint *temp_con;
63 Constraint *dummy_plug;
64 temp_con = new Constraint[entry_plug->n_SRI];
65 n_constrained = 0;
66 int constrained = 0;
67
68 SRI** theArray;
69 for(int i = 0; i < nMols; i++){
70
71 theArray = (SRI**) molecules[i].getMyBonds();
72 for(int j=0; j<molecules[i].getNBonds(); j++){
73
74 constrained = theArray[j]->is_constrained();
75
76 if(constrained){
77
78 dummy_plug = theArray[j]->get_constraint();
79 temp_con[n_constrained].set_a( dummy_plug->get_a() );
80 temp_con[n_constrained].set_b( dummy_plug->get_b() );
81 temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
82
83 n_constrained++;
84 constrained = 0;
85 }
86 }
87
88 theArray = (SRI**) molecules[i].getMyBends();
89 for(int j=0; j<molecules[i].getNBends(); j++){
90
91 constrained = theArray[j]->is_constrained();
92
93 if(constrained){
94
95 dummy_plug = theArray[j]->get_constraint();
96 temp_con[n_constrained].set_a( dummy_plug->get_a() );
97 temp_con[n_constrained].set_b( dummy_plug->get_b() );
98 temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
99
100 n_constrained++;
101 constrained = 0;
102 }
103 }
104
105 theArray = (SRI**) molecules[i].getMyTorsions();
106 for(int j=0; j<molecules[i].getNTorsions(); j++){
107
108 constrained = theArray[j]->is_constrained();
109
110 if(constrained){
111
112 dummy_plug = theArray[j]->get_constraint();
113 temp_con[n_constrained].set_a( dummy_plug->get_a() );
114 temp_con[n_constrained].set_b( dummy_plug->get_b() );
115 temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() );
116
117 n_constrained++;
118 constrained = 0;
119 }
120 }
121 }
122
123 if(n_constrained > 0){
124
125 is_constrained = 1;
126 constrained_i = new int[n_constrained];
127 constrained_j = new int[n_constrained];
128 constrained_dsqr = new double[n_constrained];
129
130 for( int i = 0; i < n_constrained; i++){
131
132 /* add 1 to the index for the fortran arrays. */
133
134 constrained_i[i] = temp_con[i].get_a() + 1;
135 constrained_j[i] = temp_con[i].get_b() + 1;
136 constrained_dsqr[i] = temp_con[i].get_dsqr();
137 }
138 }
139
140 delete[] temp_con;
141 }
142
143 Symplectic::~Symplectic() {
144
145 if( n_constrained ){
146 delete[] constrained_i;
147 delete[] constrained_j;
148 delete[] constrained_dsqr;
149 }
150
151 }
152
153
154 void Symplectic::integrate( void ){
155
156 const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
157
158 int i, j; // loop counters
159 int nAtoms = entry_plug->n_atoms; // the number of atoms
160 double kE = 0.0; // the kinetic energy
161 double rot_kE;
162 double trans_kE;
163 int tl; // the time loop conter
164 double dt2; // half the dt
165
166 double vx, vy, vz; // the velocities
167 // double vx2, vy2, vz2; // the square of the velocities
168 double rx, ry, rz; // the postitions
169
170 double ji[3]; // the body frame angular momentum
171 double jx2, jy2, jz2; // the square of the angular momentums
172 double Tb[3]; // torque in the body frame
173 double angle; // the angle through which to rotate the rotation matrix
174 double A[3][3]; // the rotation matrix
175
176 int time;
177
178 double dt = entry_plug->dt;
179 double runTime = entry_plug->run_time;
180 double sampleTime = entry_plug->sampleTime;
181 double statusTime = entry_plug->statusTime;
182 double thermalTime = entry_plug->thermalTime;
183
184 int n_loops = (int)( runTime / dt );
185 int sample_n = (int)( sampleTime / dt );
186 int status_n = (int)( statusTime / dt );
187 int vel_n = (int)( thermalTime / dt );
188
189 int calcPot, calcStress;
190
191 Thermo *tStats;
192 StatWriter* e_out;
193 DumpWriter* dump_out;
194
195 std::cerr << "about to call new thermo\n";
196
197 tStats = new Thermo( entry_plug );
198 e_out = new StatWriter( entry_plug );
199
200 std::cerr << "calling dumpWriter \n";
201 dump_out = new DumpWriter( entry_plug );
202 std::cerr << "called dumpWriter \n";
203
204 Atom** atoms = entry_plug->atoms;
205 DirectionalAtom* dAtom;
206 dt2 = 0.5 * dt;
207
208 // initialize the forces the before the first step
209
210 myFF->doForces(1,1);
211
212 if( entry_plug->setTemp ){
213
214 tStats->velocitize();
215 }
216
217 dump_out->writeDump( 0.0 );
218 e_out->writeStat( 0.0 );
219
220 calcPot = 0;
221
222 if( n_constrained ){
223
224 double *Rx = new double[nAtoms];
225 double *Ry = new double[nAtoms];
226 double *Rz = new double[nAtoms];
227
228 double *Vx = new double[nAtoms];
229 double *Vy = new double[nAtoms];
230 double *Vz = new double[nAtoms];
231
232 double *Fx = new double[nAtoms];
233 double *Fy = new double[nAtoms];
234 double *Fz = new double[nAtoms];
235
236
237 for( tl=0; tl < n_loops; tl++ ){
238
239 for( j=0; j<nAtoms; j++ ){
240
241 Rx[j] = atoms[j]->getX();
242 Ry[j] = atoms[j]->getY();
243 Rz[j] = atoms[j]->getZ();
244
245 Vx[j] = atoms[j]->get_vx();
246 Vy[j] = atoms[j]->get_vy();
247 Vz[j] = atoms[j]->get_vz();
248
249 Fx[j] = atoms[j]->getFx();
250 Fy[j] = atoms[j]->getFy();
251 Fz[j] = atoms[j]->getFz();
252
253 }
254
255 v_constrain_a_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
256 Fx, Fy, Fz,
257 n_constrained, constrained_dsqr,
258 constrained_i, constrained_j,
259 entry_plug->box_x,
260 entry_plug->box_y,
261 entry_plug->box_z );
262
263 for( j=0; j<nAtoms; j++ ){
264
265 atoms[j]->setX(Rx[j]);
266 atoms[j]->setY(Ry[j]);
267 atoms[j]->setZ(Rz[j]);
268
269 atoms[j]->set_vx(Vx[j]);
270 atoms[j]->set_vy(Vy[j]);
271 atoms[j]->set_vz(Vz[j]);
272 }
273
274
275 // for( i=0; i<nAtoms; i++ ){
276 // // if( atoms[i]->isDirectional() ){
277
278 // // dAtom = (DirectionalAtom *)atoms[i];
279
280 // // // get and convert the torque to body frame
281
282 // // Tb[0] = dAtom->getTx();
283 // // Tb[1] = dAtom->getTy();
284 // // Tb[2] = dAtom->getTz();
285
286 // // dAtom->lab2Body( Tb );
287
288 // // // get the angular momentum, and propagate a half step
289
290 // // ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
291 // // ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
292 // // ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
293
294 // // // get the atom's rotation matrix
295
296 // // A[0][0] = dAtom->getAxx();
297 // // A[0][1] = dAtom->getAxy();
298 // // A[0][2] = dAtom->getAxz();
299
300 // // A[1][0] = dAtom->getAyx();
301 // // A[1][1] = dAtom->getAyy();
302 // // A[1][2] = dAtom->getAyz();
303
304 // // A[2][0] = dAtom->getAzx();
305 // // A[2][1] = dAtom->getAzy();
306 // // A[2][2] = dAtom->getAzz();
307
308
309 // // // use the angular velocities to propagate the rotation matrix a
310 // // // full time step
311
312
313 // // angle = dt2 * ji[0] / dAtom->getIxx();
314 // // this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
315
316 // // angle = dt2 * ji[1] / dAtom->getIyy();
317 // // this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
318
319 // // angle = dt * ji[2] / dAtom->getIzz();
320 // // this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
321
322 // // angle = dt2 * ji[1] / dAtom->getIyy();
323 // // this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
324
325 // // angle = dt2 * ji[0] / dAtom->getIxx();
326 // // this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
327
328
329 // // dAtom->setA( A );
330 // // dAtom->setJx( ji[0] );
331 // // dAtom->setJy( ji[1] );
332 // // dAtom->setJz( ji[2] );
333 // // }
334 // }
335
336 // calculate the forces
337
338 myFF->doForces(calcPot, calcStress);
339
340 // move b
341
342 for( j=0; j<nAtoms; j++ ){
343
344 Rx[j] = atoms[j]->getX();
345 Ry[j] = atoms[j]->getY();
346 Rz[j] = atoms[j]->getZ();
347
348 Vx[j] = atoms[j]->get_vx();
349 Vy[j] = atoms[j]->get_vy();
350 Vz[j] = atoms[j]->get_vz();
351
352 Fx[j] = atoms[j]->getFx();
353 Fy[j] = atoms[j]->getFy();
354 Fz[j] = atoms[j]->getFz();
355 }
356
357 v_constrain_b_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,
358 Fx, Fy, Fz,
359 kE, n_constrained, constrained_dsqr,
360 constrained_i, constrained_j,
361 entry_plug->box_x,
362 entry_plug->box_y,
363 entry_plug->box_z );
364
365 for( j=0; j<nAtoms; j++ ){
366
367 atoms[j]->setX(Rx[j]);
368 atoms[j]->setY(Ry[j]);
369 atoms[j]->setZ(Rz[j]);
370
371 atoms[j]->set_vx(Vx[j]);
372 atoms[j]->set_vy(Vy[j]);
373 atoms[j]->set_vz(Vz[j]);
374 }
375
376 // for( i=0; i< nAtoms; i++ ){
377
378 // if( atoms[i]->isDirectional() ){
379
380 // dAtom = (DirectionalAtom *)atoms[i];
381
382 // // get and convert the torque to body frame
383
384 // Tb[0] = dAtom->getTx();
385 // Tb[1] = dAtom->getTy();
386 // Tb[2] = dAtom->getTz();
387
388 // dAtom->lab2Body( Tb );
389
390 // // get the angular momentum, and complete the angular momentum
391 // // half step
392
393 // ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
394 // ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
395 // ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
396
397 // dAtom->setJx( ji[0] );
398 // dAtom->setJy( ji[1] );
399 // dAtom->setJz( ji[2] );
400 // }
401 // }
402
403 time = tl + 1;
404
405 if( entry_plug->setTemp ){
406 if( !(time % vel_n) ) tStats->velocitize();
407 }
408 if( !(time % sample_n) ) dump_out->writeDump( time * dt );
409 if( !((time+1) % status_n) ) {
410 calcPot = 1;
411 calcStress = 1;
412 }
413 if( !(time % status_n) ){
414 e_out->writeStat( time * dt );
415 calcPot = 0;
416 calcStress = 0;
417 }
418 }
419 }
420 else{
421
422 for( tl=0; tl<n_loops; tl++ ){
423
424 kE = 0.0;
425 rot_kE= 0.0;
426 trans_kE = 0.0;
427
428 for( i=0; i<nAtoms; i++ ){
429
430 // velocity half step
431
432 vx = atoms[i]->get_vx() +
433 ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
434 vy = atoms[i]->get_vy() +
435 ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
436 vz = atoms[i]->get_vz() +
437 ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
438
439 // position whole step
440
441 rx = atoms[i]->getX() + dt * vx;
442 ry = atoms[i]->getY() + dt * vy;
443 rz = atoms[i]->getZ() + dt * vz;
444
445 atoms[i]->setX( rx );
446 atoms[i]->setY( ry );
447 atoms[i]->setZ( rz );
448
449 atoms[i]->set_vx( vx );
450 atoms[i]->set_vy( vy );
451 atoms[i]->set_vz( vz );
452
453 // if( atoms[i]->isDirectional() ){
454
455 // dAtom = (DirectionalAtom *)atoms[i];
456
457 // // get and convert the torque to body frame
458
459 // Tb[0] = dAtom->getTx();
460 // Tb[1] = dAtom->getTy();
461 // Tb[2] = dAtom->getTz();
462
463 // dAtom->lab2Body( Tb );
464
465 // // get the angular momentum, and propagate a half step
466
467 // ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
468 // ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
469 // ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
470
471 // // get the atom's rotation matrix
472
473 // A[0][0] = dAtom->getAxx();
474 // A[0][1] = dAtom->getAxy();
475 // A[0][2] = dAtom->getAxz();
476
477 // A[1][0] = dAtom->getAyx();
478 // A[1][1] = dAtom->getAyy();
479 // A[1][2] = dAtom->getAyz();
480
481 // A[2][0] = dAtom->getAzx();
482 // A[2][1] = dAtom->getAzy();
483 // A[2][2] = dAtom->getAzz();
484
485
486 // // use the angular velocities to propagate the rotation matrix a
487 // // full time step
488
489
490 // angle = dt2 * ji[0] / dAtom->getIxx();
491 // this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
492
493 // angle = dt2 * ji[1] / dAtom->getIyy();
494 // this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
495
496 // angle = dt * ji[2] / dAtom->getIzz();
497 // this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis
498
499 // angle = dt2 * ji[1] / dAtom->getIyy();
500 // this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis
501
502 // angle = dt2 * ji[0] / dAtom->getIxx();
503 // this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis
504
505
506 // dAtom->setA( A );
507 // dAtom->setJx( ji[0] );
508 // dAtom->setJy( ji[1] );
509 // dAtom->setJz( ji[2] );
510 // }
511 }
512
513 // calculate the forces
514
515 myFF->doForces(calcPot,calcStress);
516
517 for( i=0; i< nAtoms; i++ ){
518
519 // complete the velocity half step
520
521 vx = atoms[i]->get_vx() +
522 ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert;
523 vy = atoms[i]->get_vy() +
524 ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert;
525 vz = atoms[i]->get_vz() +
526 ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert;
527
528 atoms[i]->set_vx( vx );
529 atoms[i]->set_vy( vy );
530 atoms[i]->set_vz( vz );
531
532 // vx2 = vx * vx;
533 // vy2 = vy * vy;
534 // vz2 = vz * vz;
535
536 // if( atoms[i]->isDirectional() ){
537
538 // dAtom = (DirectionalAtom *)atoms[i];
539
540 // // get and convert the torque to body frame
541
542 // Tb[0] = dAtom->getTx();
543 // Tb[1] = dAtom->getTy();
544 // Tb[2] = dAtom->getTz();
545
546 // dAtom->lab2Body( Tb );
547
548 // // get the angular momentum, and complete the angular momentum
549 // // half step
550
551 // ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert;
552 // ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert;
553 // ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert;
554
555 // jx2 = ji[0] * ji[0];
556 // jy2 = ji[1] * ji[1];
557 // jz2 = ji[2] * ji[2];
558
559 // rot_kE += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
560 // + (jz2 / dAtom->getIzz());
561
562 // dAtom->setJx( ji[0] );
563 // dAtom->setJy( ji[1] );
564 // dAtom->setJz( ji[2] );
565 // }
566 }
567
568 time = tl + 1;
569
570 if( entry_plug->setTemp ){
571 if( !(time % vel_n) ) tStats->velocitize();
572 }
573 if( !(time % sample_n) ) dump_out->writeDump( time * dt );
574 if( !((time+1) % status_n) ) {
575 calcPot = 1;
576 calcStress = 1;
577 }
578 if( !(time % status_n) ){
579 e_out->writeStat( time * dt );
580 calcPot = 0;
581 calcStress = 0;
582 }
583 }
584 }
585
586 dump_out->writeFinal();
587
588 delete dump_out;
589 delete e_out;
590 }
591
592 void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3],
593 double A[3][3] ){
594
595 int i,j,k;
596 double sinAngle;
597 double cosAngle;
598 double angleSqr;
599 double angleSqrOver4;
600 double top, bottom;
601 double rot[3][3];
602 double tempA[3][3];
603 double tempJ[3];
604
605 // initialize the tempA
606
607 for(i=0; i<3; i++){
608 for(j=0; j<3; j++){
609 tempA[j][i] = A[i][j];
610 }
611 }
612
613 // initialize the tempJ
614
615 for( i=0; i<3; i++) tempJ[i] = ji[i];
616
617 // initalize rot as a unit matrix
618
619 rot[0][0] = 1.0;
620 rot[0][1] = 0.0;
621 rot[0][2] = 0.0;
622
623 rot[1][0] = 0.0;
624 rot[1][1] = 1.0;
625 rot[1][2] = 0.0;
626
627 rot[2][0] = 0.0;
628 rot[2][1] = 0.0;
629 rot[2][2] = 1.0;
630
631 // use a small angle aproximation for sin and cosine
632
633 angleSqr = angle * angle;
634 angleSqrOver4 = angleSqr / 4.0;
635 top = 1.0 - angleSqrOver4;
636 bottom = 1.0 + angleSqrOver4;
637
638 cosAngle = top / bottom;
639 sinAngle = angle / bottom;
640
641 rot[axes1][axes1] = cosAngle;
642 rot[axes2][axes2] = cosAngle;
643
644 rot[axes1][axes2] = sinAngle;
645 rot[axes2][axes1] = -sinAngle;
646
647 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
648
649 for(i=0; i<3; i++){
650 ji[i] = 0.0;
651 for(k=0; k<3; k++){
652 ji[i] += rot[i][k] * tempJ[k];
653 }
654 }
655
656 // rotate the Rotation matrix acording to:
657 // A[][] = A[][] * transpose(rot[][])
658
659
660 // NOte for as yet unknown reason, we are setting the performing the
661 // calculation as:
662 // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
663
664 for(i=0; i<3; i++){
665 for(j=0; j<3; j++){
666 A[j][i] = 0.0;
667 for(k=0; k<3; k++){
668 A[j][i] += tempA[i][k] * rot[j][k];
669 }
670 }
671 }
672 }