ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 1131
Committed: Thu Apr 22 21:33:55 2004 UTC (20 years, 4 months ago) by tim
File size: 10251 byte(s)
Log Message:
change the calculation of pressure tensor

File Contents

# User Rev Content
1 gezelter 829 #include <math.h>
2 mmeineke 377 #include <iostream>
3     using namespace std;
4    
5     #ifdef IS_MPI
6     #include <mpi.h>
7     #endif //is_mpi
8    
9     #include "Thermo.hpp"
10     #include "SRI.hpp"
11     #include "Integrator.hpp"
12 chuckv 438 #include "simError.h"
13 tim 1131 #include "MatVec3.h"
14 mmeineke 402
15     #ifdef IS_MPI
16 chuckv 401 #define __C
17 mmeineke 402 #include "mpiSimulation.hpp"
18     #endif // is_mpi
19 mmeineke 377
20 mmeineke 614 Thermo::Thermo( SimInfo* the_info ) {
21     info = the_info;
22 tim 708 int baseSeed = the_info->getSeed();
23 mmeineke 377
24     gaussStream = new gaussianSPRNG( baseSeed );
25     }
26    
27     Thermo::~Thermo(){
28     delete gaussStream;
29     }
30    
31     double Thermo::getKinetic(){
32    
33     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
34 gezelter 608 double kinetic;
35     double amass;
36     double aVel[3], aJ[3], I[3][3];
37 tim 1118 int i, j, k, kl;
38 mmeineke 377
39     double kinetic_global;
40 tim 1113 vector<StuntDouble *> integrableObjects = info->integrableObjects;
41 mmeineke 377
42     kinetic = 0.0;
43     kinetic_global = 0.0;
44    
45 tim 1113 for (kl=0; kl<integrableObjects.size(); kl++) {
46     integrableObjects[kl]->getVel(aVel);
47     amass = integrableObjects[kl]->getMass();
48 gezelter 608
49 tim 1113 for(j=0; j<3; j++)
50     kinetic += amass*aVel[j]*aVel[j];
51    
52     if (integrableObjects[kl]->isDirectional()){
53    
54     integrableObjects[kl]->getJ( aJ );
55     integrableObjects[kl]->getI( I );
56    
57 tim 1118 if (integrableObjects[kl]->isLinear()) {
58     i = integrableObjects[kl]->linearAxis();
59     j = (i+1)%3;
60     k = (i+2)%3;
61     kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
62     } else {
63 gezelter 1125 for (j=0; j<3; j++)
64     kinetic += aJ[j]*aJ[j] / I[j][j];
65 tim 1118 }
66 gezelter 1125 }
67 mmeineke 377 }
68     #ifdef IS_MPI
69 mmeineke 447 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
70     MPI_SUM, MPI_COMM_WORLD);
71 mmeineke 377 kinetic = kinetic_global;
72     #endif //is_mpi
73 gezelter 1125
74 mmeineke 377 kinetic = kinetic * 0.5 / e_convert;
75    
76     return kinetic;
77     }
78    
79     double Thermo::getPotential(){
80    
81 chuckv 401 double potential_local;
82 mmeineke 377 double potential;
83     int el, nSRI;
84 mmeineke 428 Molecule* molecules;
85 mmeineke 377
86 mmeineke 614 molecules = info->molecules;
87     nSRI = info->n_SRI;
88 mmeineke 377
89 chuckv 401 potential_local = 0.0;
90 chuckv 438 potential = 0.0;
91 mmeineke 614 potential_local += info->lrPot;
92 mmeineke 377
93 mmeineke 614 for( el=0; el<info->n_mol; el++ ){
94 mmeineke 428 potential_local += molecules[el].getPotential();
95 mmeineke 377 }
96    
97     // Get total potential for entire system from MPI.
98     #ifdef IS_MPI
99 mmeineke 447 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
100     MPI_SUM, MPI_COMM_WORLD);
101 chuckv 401 #else
102     potential = potential_local;
103 mmeineke 377 #endif // is_mpi
104    
105     return potential;
106     }
107    
108     double Thermo::getTotalE(){
109    
110     double total;
111    
112     total = this->getKinetic() + this->getPotential();
113     return total;
114     }
115    
116 gezelter 454 double Thermo::getTemperature(){
117    
118 tim 763 const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
119 gezelter 454 double temperature;
120 tim 1113
121 mmeineke 614 temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
122 mmeineke 377 return temperature;
123     }
124    
125 gezelter 484 double Thermo::getVolume() {
126 gezelter 574
127 mmeineke 614 return info->boxVol;
128 gezelter 484 }
129    
130 gezelter 483 double Thermo::getPressure() {
131 gezelter 574
132 gezelter 483 // Relies on the calculation of the full molecular pressure tensor
133    
134     const double p_convert = 1.63882576e8;
135 gezelter 588 double press[3][3];
136 gezelter 483 double pressure;
137    
138     this->getPressureTensor(press);
139    
140 gezelter 588 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
141 gezelter 483
142     return pressure;
143     }
144    
145 mmeineke 755 double Thermo::getPressureX() {
146 gezelter 483
147 mmeineke 755 // Relies on the calculation of the full molecular pressure tensor
148    
149     const double p_convert = 1.63882576e8;
150     double press[3][3];
151     double pressureX;
152    
153     this->getPressureTensor(press);
154    
155     pressureX = p_convert * press[0][0];
156    
157     return pressureX;
158     }
159    
160     double Thermo::getPressureY() {
161    
162     // Relies on the calculation of the full molecular pressure tensor
163    
164     const double p_convert = 1.63882576e8;
165     double press[3][3];
166     double pressureY;
167    
168     this->getPressureTensor(press);
169    
170     pressureY = p_convert * press[1][1];
171    
172     return pressureY;
173     }
174    
175     double Thermo::getPressureZ() {
176    
177     // Relies on the calculation of the full molecular pressure tensor
178    
179     const double p_convert = 1.63882576e8;
180     double press[3][3];
181     double pressureZ;
182    
183     this->getPressureTensor(press);
184    
185     pressureZ = p_convert * press[2][2];
186    
187     return pressureZ;
188     }
189    
190    
191 gezelter 588 void Thermo::getPressureTensor(double press[3][3]){
192 gezelter 483 // returns pressure tensor in units amu*fs^-2*Ang^-1
193 gezelter 445 // routine derived via viral theorem description in:
194     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
195 mmeineke 377
196 gezelter 477 const double e_convert = 4.184e-4;
197 gezelter 483
198     double molmass, volume;
199 tim 1131 double vcom[3], pcom[3], fcom[3], scaled[3];
200 gezelter 483 double p_local[9], p_global[9];
201 mmeineke 614 int i, j, k, nMols;
202 gezelter 468 Molecule* molecules;
203    
204 mmeineke 614 nMols = info->n_mol;
205     molecules = info->molecules;
206     //tau = info->tau;
207 gezelter 468
208     // use velocities of molecular centers of mass and molecular masses:
209 gezelter 483 for (i=0; i < 9; i++) {
210     p_local[i] = 0.0;
211     p_global[i] = 0.0;
212     }
213 gezelter 475
214 tim 1131 for (i=0; i < info->integrableObjects.size(); i++) {
215 gezelter 483
216 tim 1131 molmass = info->integrableObjects[i]->getMass();
217    
218     info->integrableObjects[i]->getVel(vcom);
219     info->integrableObjects[i]->getPos(pcom);
220     info->integrableObjects[i]->getFrc(fcom);
221    
222     matVecMul3(info->HmatInv, pcom, scaled);
223    
224     for(j=0; j<3; j++)
225     scaled[j] -= roundMe(scaled[j]);
226    
227     // calc the wrapped real coordinates from the wrapped scaled coordinates
228    
229     matVecMul3(info->Hmat, scaled, pcom);
230    
231     p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert;
232     p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert;
233     p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert;
234     p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert;
235     p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert;
236     p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert;
237     p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert;
238     p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert;
239     p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert;
240    
241 gezelter 468 }
242    
243     // Get total for entire system from MPI.
244 chuckv 479
245 gezelter 468 #ifdef IS_MPI
246 gezelter 483 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
247 gezelter 468 #else
248 gezelter 483 for (i=0; i<9; i++) {
249     p_global[i] = p_local[i];
250     }
251 gezelter 468 #endif // is_mpi
252    
253 gezelter 611 volume = this->getVolume();
254 gezelter 468
255 gezelter 588 for(i = 0; i < 3; i++) {
256     for (j = 0; j < 3; j++) {
257     k = 3*i + j;
258 tim 1131 press[i][j] = p_global[k] / volume;
259 mmeineke 614
260 gezelter 588 }
261 gezelter 483 }
262 mmeineke 377 }
263    
264     void Thermo::velocitize() {
265    
266 gezelter 608 double aVel[3], aJ[3], I[3][3];
267 tim 1127 int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
268 chuckv 403 double vdrift[3];
269 mmeineke 377 double vbar;
270     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
271     double av2;
272     double kebar;
273     double temperature;
274 tim 1127 int nobj;
275 mmeineke 377
276 tim 1127 nobj = info->integrableObjects.size();
277    
278 mmeineke 614 temperature = info->target_temp;
279 mmeineke 377
280 tim 763 kebar = kb * temperature * (double)info->ndfRaw /
281     ( 2.0 * (double)info->ndf );
282 chuckv 403
283 tim 1127 for(vr = 0; vr < nobj; vr++){
284 mmeineke 377
285     // uses equipartition theory to solve for vbar in angstrom/fs
286    
287 tim 1127 av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
288 mmeineke 377 vbar = sqrt( av2 );
289 mmeineke 853
290 mmeineke 377 // picks random velocities from a gaussian distribution
291     // centered on vbar
292    
293 gezelter 608 for (j=0; j<3; j++)
294     aVel[j] = vbar * gaussStream->getGaussian();
295    
296 tim 1127 info->integrableObjects[vr]->setVel( aVel );
297    
298     if(info->integrableObjects[vr]->isDirectional()){
299 mmeineke 377
300 tim 1127 info->integrableObjects[vr]->getI( I );
301    
302     if (info->integrableObjects[vr]->isLinear()) {
303    
304     l= info->integrableObjects[vr]->linearAxis();
305     m = (l+1)%3;
306     n = (l+2)%3;
307    
308     aJ[l] = 0.0;
309     vbar = sqrt( 2.0 * kebar * I[m][m] );
310     aJ[m] = vbar * gaussStream->getGaussian();
311     vbar = sqrt( 2.0 * kebar * I[n][n] );
312     aJ[n] = vbar * gaussStream->getGaussian();
313    
314     } else {
315     for (j = 0 ; j < 3; j++) {
316     vbar = sqrt( 2.0 * kebar * I[j][j] );
317     aJ[j] = vbar * gaussStream->getGaussian();
318     }
319     } // else isLinear
320    
321     info->integrableObjects[vr]->setJ( aJ );
322    
323     }//isDirectional
324    
325 mmeineke 377 }
326 chuckv 401
327     // Get the Center of Mass drift velocity.
328    
329 chuckv 403 getCOMVel(vdrift);
330 mmeineke 377
331     // Corrects for the center of mass drift.
332     // sums all the momentum and divides by total mass.
333    
334 tim 1127 for(vd = 0; vd < nobj; vd++){
335 mmeineke 377
336 tim 1127 info->integrableObjects[vd]->getVel(aVel);
337 gezelter 608
338     for (j=0; j < 3; j++)
339     aVel[j] -= vdrift[j];
340 chuckv 401
341 tim 1127 info->integrableObjects[vd]->setVel( aVel );
342 mmeineke 377 }
343    
344     }
345 chuckv 401
346 chuckv 403 void Thermo::getCOMVel(double vdrift[3]){
347 chuckv 401
348     double mtot, mtot_local;
349 gezelter 608 double aVel[3], amass;
350 chuckv 401 double vdrift_local[3];
351 tim 1127 int vd, j;
352     int nobj;
353 chuckv 401
354 tim 1127 nobj = info->integrableObjects.size();
355 chuckv 401
356     mtot_local = 0.0;
357     vdrift_local[0] = 0.0;
358     vdrift_local[1] = 0.0;
359     vdrift_local[2] = 0.0;
360    
361 tim 1127 for(vd = 0; vd < nobj; vd++){
362 chuckv 401
363 tim 1127 amass = info->integrableObjects[vd]->getMass();
364     info->integrableObjects[vd]->getVel( aVel );
365 gezelter 608
366     for(j = 0; j < 3; j++)
367     vdrift_local[j] += aVel[j] * amass;
368 chuckv 401
369 gezelter 608 mtot_local += amass;
370 chuckv 401 }
371    
372     #ifdef IS_MPI
373 mmeineke 447 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374     MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 chuckv 401 #else
376     mtot = mtot_local;
377     for(vd = 0; vd < 3; vd++) {
378     vdrift[vd] = vdrift_local[vd];
379     }
380     #endif
381    
382     for (vd = 0; vd < 3; vd++) {
383     vdrift[vd] = vdrift[vd] / mtot;
384     }
385    
386     }
387    
388 tim 763 void Thermo::getCOM(double COM[3]){
389    
390     double mtot, mtot_local;
391     double aPos[3], amass;
392     double COM_local[3];
393 tim 1127 int i, j;
394     int nobj;
395 tim 763
396     mtot_local = 0.0;
397     COM_local[0] = 0.0;
398     COM_local[1] = 0.0;
399     COM_local[2] = 0.0;
400 tim 1127
401     nobj = info->integrableObjects.size();
402     for(i = 0; i < nobj; i++){
403 tim 763
404 tim 1127 amass = info->integrableObjects[i]->getMass();
405     info->integrableObjects[i]->getPos( aPos );
406 tim 763
407     for(j = 0; j < 3; j++)
408     COM_local[j] += aPos[j] * amass;
409    
410     mtot_local += amass;
411     }
412    
413     #ifdef IS_MPI
414     MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415     MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416     #else
417     mtot = mtot_local;
418     for(i = 0; i < 3; i++) {
419     COM[i] = COM_local[i];
420     }
421     #endif
422    
423     for (i = 0; i < 3; i++) {
424     COM[i] = COM[i] / mtot;
425     }
426     }
427 tim 1127
428     void Thermo::removeCOMdrift() {
429     double vdrift[3], aVel[3];
430     int vd, j, nobj;
431    
432     nobj = info->integrableObjects.size();
433    
434     // Get the Center of Mass drift velocity.
435    
436     getCOMVel(vdrift);
437    
438     // Corrects for the center of mass drift.
439     // sums all the momentum and divides by total mass.
440    
441     for(vd = 0; vd < nobj; vd++){
442    
443     info->integrableObjects[vd]->getVel(aVel);
444    
445     for (j=0; j < 3; j++)
446     aVel[j] -= vdrift[j];
447    
448     info->integrableObjects[vd]->setVel( aVel );
449     }
450     }