ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 1192
Committed: Mon May 24 21:03:30 2004 UTC (20 years, 1 month ago) by gezelter
File size: 10131 byte(s)
Log Message:
Fixes for stress / pressure tensor by cutoff group

File Contents

# User Rev Content
1 gezelter 829 #include <math.h>
2 mmeineke 377 #include <iostream>
3     using namespace std;
4    
5     #ifdef IS_MPI
6     #include <mpi.h>
7     #endif //is_mpi
8    
9     #include "Thermo.hpp"
10     #include "SRI.hpp"
11     #include "Integrator.hpp"
12 chuckv 438 #include "simError.h"
13 tim 1131 #include "MatVec3.h"
14 mmeineke 402
15     #ifdef IS_MPI
16 chuckv 401 #define __C
17 mmeineke 402 #include "mpiSimulation.hpp"
18     #endif // is_mpi
19 mmeineke 377
20 gezelter 1133 inline double roundMe( double x ){
21     return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22     }
23    
24 mmeineke 614 Thermo::Thermo( SimInfo* the_info ) {
25     info = the_info;
26 tim 708 int baseSeed = the_info->getSeed();
27 mmeineke 377
28     gaussStream = new gaussianSPRNG( baseSeed );
29     }
30    
31     Thermo::~Thermo(){
32     delete gaussStream;
33     }
34    
35     double Thermo::getKinetic(){
36    
37     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 gezelter 608 double kinetic;
39     double amass;
40     double aVel[3], aJ[3], I[3][3];
41 tim 1118 int i, j, k, kl;
42 mmeineke 377
43     double kinetic_global;
44 tim 1113 vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 mmeineke 377
46     kinetic = 0.0;
47     kinetic_global = 0.0;
48    
49 tim 1113 for (kl=0; kl<integrableObjects.size(); kl++) {
50     integrableObjects[kl]->getVel(aVel);
51     amass = integrableObjects[kl]->getMass();
52 gezelter 608
53 tim 1113 for(j=0; j<3; j++)
54     kinetic += amass*aVel[j]*aVel[j];
55    
56     if (integrableObjects[kl]->isDirectional()){
57    
58     integrableObjects[kl]->getJ( aJ );
59     integrableObjects[kl]->getI( I );
60    
61 tim 1118 if (integrableObjects[kl]->isLinear()) {
62     i = integrableObjects[kl]->linearAxis();
63     j = (i+1)%3;
64     k = (i+2)%3;
65     kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66     } else {
67 gezelter 1125 for (j=0; j<3; j++)
68     kinetic += aJ[j]*aJ[j] / I[j][j];
69 tim 1118 }
70 gezelter 1125 }
71 mmeineke 377 }
72     #ifdef IS_MPI
73 mmeineke 447 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74     MPI_SUM, MPI_COMM_WORLD);
75 mmeineke 377 kinetic = kinetic_global;
76     #endif //is_mpi
77 gezelter 1125
78 mmeineke 377 kinetic = kinetic * 0.5 / e_convert;
79    
80     return kinetic;
81     }
82    
83     double Thermo::getPotential(){
84    
85 chuckv 401 double potential_local;
86 mmeineke 377 double potential;
87     int el, nSRI;
88 mmeineke 428 Molecule* molecules;
89 mmeineke 377
90 mmeineke 614 molecules = info->molecules;
91     nSRI = info->n_SRI;
92 mmeineke 377
93 chuckv 401 potential_local = 0.0;
94 chuckv 438 potential = 0.0;
95 mmeineke 614 potential_local += info->lrPot;
96 mmeineke 377
97 mmeineke 614 for( el=0; el<info->n_mol; el++ ){
98 mmeineke 428 potential_local += molecules[el].getPotential();
99 mmeineke 377 }
100    
101     // Get total potential for entire system from MPI.
102     #ifdef IS_MPI
103 mmeineke 447 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104     MPI_SUM, MPI_COMM_WORLD);
105 chuckv 401 #else
106     potential = potential_local;
107 mmeineke 377 #endif // is_mpi
108    
109     return potential;
110     }
111    
112     double Thermo::getTotalE(){
113    
114     double total;
115    
116     total = this->getKinetic() + this->getPotential();
117     return total;
118     }
119    
120 gezelter 454 double Thermo::getTemperature(){
121    
122 tim 763 const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123 gezelter 454 double temperature;
124 tim 1113
125 mmeineke 614 temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 mmeineke 377 return temperature;
127     }
128    
129 gezelter 484 double Thermo::getVolume() {
130 gezelter 574
131 mmeineke 614 return info->boxVol;
132 gezelter 484 }
133    
134 gezelter 483 double Thermo::getPressure() {
135 gezelter 574
136 gezelter 483 // Relies on the calculation of the full molecular pressure tensor
137    
138     const double p_convert = 1.63882576e8;
139 gezelter 588 double press[3][3];
140 gezelter 483 double pressure;
141    
142     this->getPressureTensor(press);
143    
144 gezelter 588 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
145 gezelter 483
146     return pressure;
147     }
148    
149 mmeineke 755 double Thermo::getPressureX() {
150 gezelter 483
151 mmeineke 755 // Relies on the calculation of the full molecular pressure tensor
152    
153     const double p_convert = 1.63882576e8;
154     double press[3][3];
155     double pressureX;
156    
157     this->getPressureTensor(press);
158    
159     pressureX = p_convert * press[0][0];
160    
161     return pressureX;
162     }
163    
164     double Thermo::getPressureY() {
165    
166     // Relies on the calculation of the full molecular pressure tensor
167    
168     const double p_convert = 1.63882576e8;
169     double press[3][3];
170     double pressureY;
171    
172     this->getPressureTensor(press);
173    
174     pressureY = p_convert * press[1][1];
175    
176     return pressureY;
177     }
178    
179     double Thermo::getPressureZ() {
180    
181     // Relies on the calculation of the full molecular pressure tensor
182    
183     const double p_convert = 1.63882576e8;
184     double press[3][3];
185     double pressureZ;
186    
187     this->getPressureTensor(press);
188    
189     pressureZ = p_convert * press[2][2];
190    
191     return pressureZ;
192     }
193    
194    
195 gezelter 588 void Thermo::getPressureTensor(double press[3][3]){
196 gezelter 483 // returns pressure tensor in units amu*fs^-2*Ang^-1
197 gezelter 445 // routine derived via viral theorem description in:
198     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199 mmeineke 377
200 gezelter 477 const double e_convert = 4.184e-4;
201 gezelter 483
202     double molmass, volume;
203 tim 1131 double vcom[3], pcom[3], fcom[3], scaled[3];
204 gezelter 483 double p_local[9], p_global[9];
205 mmeineke 614 int i, j, k, nMols;
206 gezelter 468 Molecule* molecules;
207    
208 mmeineke 614 nMols = info->n_mol;
209     molecules = info->molecules;
210     //tau = info->tau;
211 gezelter 468
212     // use velocities of molecular centers of mass and molecular masses:
213 gezelter 483 for (i=0; i < 9; i++) {
214     p_local[i] = 0.0;
215     p_global[i] = 0.0;
216     }
217 gezelter 475
218 tim 1131 for (i=0; i < info->integrableObjects.size(); i++) {
219 gezelter 483
220 tim 1131 molmass = info->integrableObjects[i]->getMass();
221    
222     info->integrableObjects[i]->getVel(vcom);
223     info->integrableObjects[i]->getPos(pcom);
224     info->integrableObjects[i]->getFrc(fcom);
225    
226     matVecMul3(info->HmatInv, pcom, scaled);
227    
228     for(j=0; j<3; j++)
229     scaled[j] -= roundMe(scaled[j]);
230    
231     // calc the wrapped real coordinates from the wrapped scaled coordinates
232    
233     matVecMul3(info->Hmat, scaled, pcom);
234    
235 gezelter 1192 p_local[0] += molmass * (vcom[0] * vcom[0]);
236     p_local[1] += molmass * (vcom[0] * vcom[1]);
237     p_local[2] += molmass * (vcom[0] * vcom[2]);
238     p_local[3] += molmass * (vcom[1] * vcom[0]);
239     p_local[4] += molmass * (vcom[1] * vcom[1]);
240     p_local[5] += molmass * (vcom[1] * vcom[2]);
241     p_local[6] += molmass * (vcom[2] * vcom[0]);
242     p_local[7] += molmass * (vcom[2] * vcom[1]);
243     p_local[8] += molmass * (vcom[2] * vcom[2]);
244 tim 1131
245 gezelter 468 }
246    
247     // Get total for entire system from MPI.
248 chuckv 479
249 gezelter 468 #ifdef IS_MPI
250 gezelter 483 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
251 gezelter 468 #else
252 gezelter 483 for (i=0; i<9; i++) {
253     p_global[i] = p_local[i];
254     }
255 gezelter 468 #endif // is_mpi
256    
257 gezelter 611 volume = this->getVolume();
258 gezelter 468
259 gezelter 588 for(i = 0; i < 3; i++) {
260     for (j = 0; j < 3; j++) {
261     k = 3*i + j;
262 gezelter 1192 press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
263 gezelter 588 }
264 gezelter 483 }
265 mmeineke 377 }
266    
267     void Thermo::velocitize() {
268    
269 gezelter 608 double aVel[3], aJ[3], I[3][3];
270 tim 1127 int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
271 chuckv 403 double vdrift[3];
272 mmeineke 377 double vbar;
273     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
274     double av2;
275     double kebar;
276     double temperature;
277 tim 1127 int nobj;
278 mmeineke 377
279 tim 1127 nobj = info->integrableObjects.size();
280    
281 mmeineke 614 temperature = info->target_temp;
282 mmeineke 377
283 tim 763 kebar = kb * temperature * (double)info->ndfRaw /
284     ( 2.0 * (double)info->ndf );
285 chuckv 403
286 tim 1127 for(vr = 0; vr < nobj; vr++){
287 mmeineke 377
288     // uses equipartition theory to solve for vbar in angstrom/fs
289    
290 tim 1127 av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
291 mmeineke 377 vbar = sqrt( av2 );
292 mmeineke 853
293 mmeineke 377 // picks random velocities from a gaussian distribution
294     // centered on vbar
295    
296 gezelter 608 for (j=0; j<3; j++)
297     aVel[j] = vbar * gaussStream->getGaussian();
298    
299 tim 1127 info->integrableObjects[vr]->setVel( aVel );
300    
301     if(info->integrableObjects[vr]->isDirectional()){
302 mmeineke 377
303 tim 1127 info->integrableObjects[vr]->getI( I );
304    
305     if (info->integrableObjects[vr]->isLinear()) {
306    
307     l= info->integrableObjects[vr]->linearAxis();
308     m = (l+1)%3;
309     n = (l+2)%3;
310    
311     aJ[l] = 0.0;
312     vbar = sqrt( 2.0 * kebar * I[m][m] );
313     aJ[m] = vbar * gaussStream->getGaussian();
314     vbar = sqrt( 2.0 * kebar * I[n][n] );
315     aJ[n] = vbar * gaussStream->getGaussian();
316    
317     } else {
318     for (j = 0 ; j < 3; j++) {
319     vbar = sqrt( 2.0 * kebar * I[j][j] );
320     aJ[j] = vbar * gaussStream->getGaussian();
321     }
322     } // else isLinear
323    
324     info->integrableObjects[vr]->setJ( aJ );
325    
326     }//isDirectional
327    
328 mmeineke 377 }
329 chuckv 401
330     // Get the Center of Mass drift velocity.
331    
332 chuckv 403 getCOMVel(vdrift);
333 mmeineke 377
334     // Corrects for the center of mass drift.
335     // sums all the momentum and divides by total mass.
336    
337 tim 1127 for(vd = 0; vd < nobj; vd++){
338 mmeineke 377
339 tim 1127 info->integrableObjects[vd]->getVel(aVel);
340 gezelter 608
341     for (j=0; j < 3; j++)
342     aVel[j] -= vdrift[j];
343 chuckv 401
344 tim 1127 info->integrableObjects[vd]->setVel( aVel );
345 mmeineke 377 }
346    
347     }
348 chuckv 401
349 chuckv 403 void Thermo::getCOMVel(double vdrift[3]){
350 chuckv 401
351     double mtot, mtot_local;
352 gezelter 608 double aVel[3], amass;
353 chuckv 401 double vdrift_local[3];
354 tim 1127 int vd, j;
355     int nobj;
356 chuckv 401
357 tim 1127 nobj = info->integrableObjects.size();
358 chuckv 401
359     mtot_local = 0.0;
360     vdrift_local[0] = 0.0;
361     vdrift_local[1] = 0.0;
362     vdrift_local[2] = 0.0;
363    
364 tim 1127 for(vd = 0; vd < nobj; vd++){
365 chuckv 401
366 tim 1127 amass = info->integrableObjects[vd]->getMass();
367     info->integrableObjects[vd]->getVel( aVel );
368 gezelter 608
369     for(j = 0; j < 3; j++)
370     vdrift_local[j] += aVel[j] * amass;
371 chuckv 401
372 gezelter 608 mtot_local += amass;
373 chuckv 401 }
374    
375     #ifdef IS_MPI
376 mmeineke 447 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
377     MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
378 chuckv 401 #else
379     mtot = mtot_local;
380     for(vd = 0; vd < 3; vd++) {
381     vdrift[vd] = vdrift_local[vd];
382     }
383     #endif
384    
385     for (vd = 0; vd < 3; vd++) {
386     vdrift[vd] = vdrift[vd] / mtot;
387     }
388    
389     }
390    
391 tim 763 void Thermo::getCOM(double COM[3]){
392    
393     double mtot, mtot_local;
394     double aPos[3], amass;
395     double COM_local[3];
396 tim 1127 int i, j;
397     int nobj;
398 tim 763
399     mtot_local = 0.0;
400     COM_local[0] = 0.0;
401     COM_local[1] = 0.0;
402     COM_local[2] = 0.0;
403 tim 1127
404     nobj = info->integrableObjects.size();
405     for(i = 0; i < nobj; i++){
406 tim 763
407 tim 1127 amass = info->integrableObjects[i]->getMass();
408     info->integrableObjects[i]->getPos( aPos );
409 tim 763
410     for(j = 0; j < 3; j++)
411     COM_local[j] += aPos[j] * amass;
412    
413     mtot_local += amass;
414     }
415    
416     #ifdef IS_MPI
417     MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
418     MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
419     #else
420     mtot = mtot_local;
421     for(i = 0; i < 3; i++) {
422     COM[i] = COM_local[i];
423     }
424     #endif
425    
426     for (i = 0; i < 3; i++) {
427     COM[i] = COM[i] / mtot;
428     }
429     }
430 tim 1127
431     void Thermo::removeCOMdrift() {
432     double vdrift[3], aVel[3];
433     int vd, j, nobj;
434    
435     nobj = info->integrableObjects.size();
436    
437     // Get the Center of Mass drift velocity.
438    
439     getCOMVel(vdrift);
440    
441     // Corrects for the center of mass drift.
442     // sums all the momentum and divides by total mass.
443    
444     for(vd = 0; vd < nobj; vd++){
445    
446     info->integrableObjects[vd]->getVel(aVel);
447    
448     for (j=0; j < 3; j++)
449     aVel[j] -= vdrift[j];
450    
451     info->integrableObjects[vd]->setVel( aVel );
452     }
453 gezelter 1133 }