ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 438
Committed: Mon Mar 31 21:50:59 2003 UTC (21 years, 3 months ago) by chuckv
File size: 7394 byte(s)
Log Message:
Fixes in MPI force calc and in Trappe_Ex parsing.

File Contents

# User Rev Content
1 mmeineke 377 #include <cmath>
2     #include <iostream>
3     using namespace std;
4    
5     #ifdef IS_MPI
6     #include <mpi.h>
7     #include <mpi++.h>
8     #endif //is_mpi
9    
10     #include "Thermo.hpp"
11     #include "SRI.hpp"
12     #include "Integrator.hpp"
13 chuckv 438 #include "simError.h"
14 mmeineke 402
15     #ifdef IS_MPI
16 chuckv 401 #define __C
17 mmeineke 402 #include "mpiSimulation.hpp"
18     #endif // is_mpi
19 mmeineke 377
20 mmeineke 402
21 mmeineke 377 #define BASE_SEED 123456789
22    
23     Thermo::Thermo( SimInfo* the_entry_plug ) {
24     entry_plug = the_entry_plug;
25     int baseSeed = BASE_SEED;
26    
27     gaussStream = new gaussianSPRNG( baseSeed );
28     }
29    
30     Thermo::~Thermo(){
31     delete gaussStream;
32     }
33    
34     double Thermo::getKinetic(){
35    
36     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
37     double vx2, vy2, vz2;
38     double kinetic, v_sqr;
39     int kl;
40     double jx2, jy2, jz2; // the square of the angular momentums
41    
42     DirectionalAtom *dAtom;
43    
44     int n_atoms;
45     double kinetic_global;
46     Atom** atoms;
47    
48    
49     n_atoms = entry_plug->n_atoms;
50     atoms = entry_plug->atoms;
51    
52     kinetic = 0.0;
53     kinetic_global = 0.0;
54     for( kl=0; kl < n_atoms; kl++ ){
55    
56     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
57     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
58     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
59    
60     v_sqr = vx2 + vy2 + vz2;
61     kinetic += atoms[kl]->getMass() * v_sqr;
62    
63     if( atoms[kl]->isDirectional() ){
64    
65     dAtom = (DirectionalAtom *)atoms[kl];
66    
67     jx2 = dAtom->getJx() * dAtom->getJx();
68     jy2 = dAtom->getJy() * dAtom->getJy();
69     jz2 = dAtom->getJz() * dAtom->getJz();
70    
71     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
72     + (jz2 / dAtom->getIzz());
73     }
74     }
75     #ifdef IS_MPI
76     MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
77     kinetic = kinetic_global;
78     #endif //is_mpi
79    
80     kinetic = kinetic * 0.5 / e_convert;
81    
82     return kinetic;
83     }
84    
85     double Thermo::getPotential(){
86    
87 chuckv 401 double potential_local;
88 mmeineke 377 double potential;
89     int el, nSRI;
90 mmeineke 428 Molecule* molecules;
91 mmeineke 377
92 mmeineke 428 molecules = entry_plug->molecules;
93 mmeineke 377 nSRI = entry_plug->n_SRI;
94    
95 chuckv 401 potential_local = 0.0;
96 chuckv 438 potential = 0.0;
97 chuckv 401 potential_local += entry_plug->lrPot;
98 mmeineke 377
99 mmeineke 423 for( el=0; el<entry_plug->n_mol; el++ ){
100 mmeineke 428 potential_local += molecules[el].getPotential();
101 mmeineke 377 }
102    
103 chuckv 438 #ifdef IS_MPI
104     /*
105     std::cerr << "node " << worldRank << ": before LONG RANGE pot = " << entry_plug->lrPot
106     << "; pot_local = " << potential_local
107     << "; pot = " << potential << "\n";
108     */
109     #endif
110    
111 mmeineke 377 // Get total potential for entire system from MPI.
112     #ifdef IS_MPI
113 chuckv 401 MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM);
114     #else
115     potential = potential_local;
116 mmeineke 377 #endif // is_mpi
117    
118 chuckv 438 #ifdef IS_MPI
119     /*
120     std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
121     */
122     #endif
123    
124 mmeineke 377 return potential;
125     }
126    
127     double Thermo::getTotalE(){
128    
129     double total;
130    
131     total = this->getKinetic() + this->getPotential();
132     return total;
133     }
134    
135     double Thermo::getTemperature(){
136    
137     const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
138     double temperature;
139 chuckv 401 int ndf_local, ndf;
140 mmeineke 377
141 chuckv 401 ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
142     - entry_plug->n_constraints;
143 mmeineke 377
144 chuckv 401 #ifdef IS_MPI
145     MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
146     #else
147     ndf = ndf_local;
148     #endif
149    
150     ndf = ndf - 3;
151    
152 mmeineke 377 temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
153     return temperature;
154     }
155    
156     double Thermo::getPressure(){
157    
158     // const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
159     // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
160     // const double conv_A_m = 1.0E-10; //convert A -> m
161    
162     return 0.0;
163     }
164    
165     void Thermo::velocitize() {
166    
167     double x,y;
168     double vx, vy, vz;
169     double jx, jy, jz;
170     int i, vr, vd; // velocity randomizer loop counters
171 chuckv 403 double vdrift[3];
172 mmeineke 377 double vbar;
173     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
174     double av2;
175     double kebar;
176 chuckv 403 int ndf, ndf_local; // number of degrees of freedom
177     int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom
178 mmeineke 377 int n_atoms;
179     Atom** atoms;
180     DirectionalAtom* dAtom;
181     double temperature;
182     int n_oriented;
183     int n_constraints;
184    
185     atoms = entry_plug->atoms;
186     n_atoms = entry_plug->n_atoms;
187     temperature = entry_plug->target_temp;
188     n_oriented = entry_plug->n_oriented;
189     n_constraints = entry_plug->n_constraints;
190    
191 chuckv 403 // Raw degrees of freedom that we have to set
192     ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented;
193 mmeineke 377
194 chuckv 403 // Degrees of freedom that can contain kinetic energy
195     ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
196     - entry_plug->n_constraints;
197    
198     #ifdef IS_MPI
199     MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
200     MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM);
201     #else
202     ndfRaw = ndfRaw_local;
203     ndf = ndf_local;
204     #endif
205     ndf = ndf - 3;
206    
207 mmeineke 377 kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
208    
209     for(vr = 0; vr < n_atoms; vr++){
210    
211     // uses equipartition theory to solve for vbar in angstrom/fs
212    
213     av2 = 2.0 * kebar / atoms[vr]->getMass();
214     vbar = sqrt( av2 );
215    
216     // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
217    
218     // picks random velocities from a gaussian distribution
219     // centered on vbar
220    
221     vx = vbar * gaussStream->getGaussian();
222     vy = vbar * gaussStream->getGaussian();
223     vz = vbar * gaussStream->getGaussian();
224    
225     atoms[vr]->set_vx( vx );
226     atoms[vr]->set_vy( vy );
227     atoms[vr]->set_vz( vz );
228     }
229 chuckv 401
230     // Get the Center of Mass drift velocity.
231    
232 chuckv 403 getCOMVel(vdrift);
233 mmeineke 377
234     // Corrects for the center of mass drift.
235     // sums all the momentum and divides by total mass.
236    
237     for(vd = 0; vd < n_atoms; vd++){
238    
239     vx = atoms[vd]->get_vx();
240     vy = atoms[vd]->get_vy();
241     vz = atoms[vd]->get_vz();
242 chuckv 401
243 mmeineke 377 vx -= vdrift[0];
244     vy -= vdrift[1];
245     vz -= vdrift[2];
246    
247     atoms[vd]->set_vx(vx);
248     atoms[vd]->set_vy(vy);
249     atoms[vd]->set_vz(vz);
250     }
251     if( n_oriented ){
252    
253     for( i=0; i<n_atoms; i++ ){
254    
255     if( atoms[i]->isDirectional() ){
256    
257     dAtom = (DirectionalAtom *)atoms[i];
258    
259     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
260     jx = vbar * gaussStream->getGaussian();
261    
262     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
263     jy = vbar * gaussStream->getGaussian();
264    
265     vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
266     jz = vbar * gaussStream->getGaussian();
267    
268     dAtom->setJx( jx );
269     dAtom->setJy( jy );
270     dAtom->setJz( jz );
271     }
272     }
273     }
274     }
275 chuckv 401
276 chuckv 403 void Thermo::getCOMVel(double vdrift[3]){
277 chuckv 401
278     double mtot, mtot_local;
279     double vdrift_local[3];
280     int vd, n_atoms;
281     Atom** atoms;
282    
283     // We are very careless here with the distinction between n_atoms and n_local
284     // We should really fix this before someone pokes an eye out.
285    
286     n_atoms = entry_plug->n_atoms;
287     atoms = entry_plug->atoms;
288    
289     mtot_local = 0.0;
290     vdrift_local[0] = 0.0;
291     vdrift_local[1] = 0.0;
292     vdrift_local[2] = 0.0;
293    
294     for(vd = 0; vd < n_atoms; vd++){
295    
296     vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
297     vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
298     vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
299    
300     mtot_local += atoms[vd]->getMass();
301     }
302    
303     #ifdef IS_MPI
304     MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM);
305 chuckv 403 MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM);
306 chuckv 401 #else
307     mtot = mtot_local;
308     for(vd = 0; vd < 3; vd++) {
309     vdrift[vd] = vdrift_local[vd];
310     }
311     #endif
312    
313     for (vd = 0; vd < 3; vd++) {
314     vdrift[vd] = vdrift[vd] / mtot;
315     }
316    
317     }
318