ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 582
Committed: Wed Jul 9 15:33:46 2003 UTC (21 years ago) by mmeineke
File size: 8349 byte(s)
Log Message:
adding in dan's NPT stuff

File Contents

# User Rev Content
1 mmeineke 377 #include <cmath>
2     #include <iostream>
3     using namespace std;
4    
5     #ifdef IS_MPI
6     #include <mpi.h>
7     #endif //is_mpi
8    
9     #include "Thermo.hpp"
10     #include "SRI.hpp"
11     #include "Integrator.hpp"
12 chuckv 438 #include "simError.h"
13 mmeineke 402
14     #ifdef IS_MPI
15 chuckv 401 #define __C
16 mmeineke 402 #include "mpiSimulation.hpp"
17     #endif // is_mpi
18 mmeineke 377
19 mmeineke 402
20 mmeineke 377 #define BASE_SEED 123456789
21    
22     Thermo::Thermo( SimInfo* the_entry_plug ) {
23     entry_plug = the_entry_plug;
24     int baseSeed = BASE_SEED;
25    
26     gaussStream = new gaussianSPRNG( baseSeed );
27     }
28    
29     Thermo::~Thermo(){
30     delete gaussStream;
31     }
32    
33     double Thermo::getKinetic(){
34    
35     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
36     double vx2, vy2, vz2;
37     double kinetic, v_sqr;
38     int kl;
39     double jx2, jy2, jz2; // the square of the angular momentums
40    
41     DirectionalAtom *dAtom;
42    
43     int n_atoms;
44     double kinetic_global;
45     Atom** atoms;
46    
47    
48     n_atoms = entry_plug->n_atoms;
49     atoms = entry_plug->atoms;
50    
51     kinetic = 0.0;
52     kinetic_global = 0.0;
53     for( kl=0; kl < n_atoms; kl++ ){
54    
55     vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
56     vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
57     vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
58    
59     v_sqr = vx2 + vy2 + vz2;
60     kinetic += atoms[kl]->getMass() * v_sqr;
61    
62     if( atoms[kl]->isDirectional() ){
63    
64     dAtom = (DirectionalAtom *)atoms[kl];
65    
66     jx2 = dAtom->getJx() * dAtom->getJx();
67     jy2 = dAtom->getJy() * dAtom->getJy();
68     jz2 = dAtom->getJz() * dAtom->getJz();
69    
70     kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
71     + (jz2 / dAtom->getIzz());
72     }
73     }
74     #ifdef IS_MPI
75 mmeineke 447 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
76     MPI_SUM, MPI_COMM_WORLD);
77 mmeineke 377 kinetic = kinetic_global;
78     #endif //is_mpi
79    
80     kinetic = kinetic * 0.5 / e_convert;
81    
82     return kinetic;
83     }
84    
85     double Thermo::getPotential(){
86    
87 chuckv 401 double potential_local;
88 mmeineke 377 double potential;
89     int el, nSRI;
90 mmeineke 428 Molecule* molecules;
91 mmeineke 377
92 mmeineke 428 molecules = entry_plug->molecules;
93 mmeineke 377 nSRI = entry_plug->n_SRI;
94    
95 chuckv 401 potential_local = 0.0;
96 chuckv 438 potential = 0.0;
97 chuckv 401 potential_local += entry_plug->lrPot;
98 mmeineke 377
99 mmeineke 423 for( el=0; el<entry_plug->n_mol; el++ ){
100 mmeineke 428 potential_local += molecules[el].getPotential();
101 mmeineke 377 }
102    
103     // Get total potential for entire system from MPI.
104     #ifdef IS_MPI
105 mmeineke 447 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
106     MPI_SUM, MPI_COMM_WORLD);
107 chuckv 401 #else
108     potential = potential_local;
109 mmeineke 377 #endif // is_mpi
110    
111 chuckv 438 #ifdef IS_MPI
112     /*
113     std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
114     */
115     #endif
116    
117 mmeineke 377 return potential;
118     }
119    
120     double Thermo::getTotalE(){
121    
122     double total;
123    
124     total = this->getKinetic() + this->getPotential();
125     return total;
126     }
127    
128 gezelter 454 double Thermo::getTemperature(){
129    
130     const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
131     double temperature;
132    
133 gezelter 458 temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
134 mmeineke 377 return temperature;
135     }
136    
137 gezelter 484 double Thermo::getEnthalpy() {
138    
139     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
140     double u, p, v;
141     double press[9];
142    
143     u = this->getTotalE();
144    
145     this->getPressureTensor(press);
146     p = (press[0] + press[4] + press[8]) / 3.0;
147    
148     v = this->getVolume();
149    
150     return (u + (p*v)/e_convert);
151     }
152    
153     double Thermo::getVolume() {
154 gezelter 574
155 mmeineke 582 return entry_plug->boxVol;
156 gezelter 484 }
157    
158 gezelter 483 double Thermo::getPressure() {
159 gezelter 574
160 gezelter 483 // Relies on the calculation of the full molecular pressure tensor
161    
162     const double p_convert = 1.63882576e8;
163     double press[9];
164     double pressure;
165    
166     this->getPressureTensor(press);
167    
168     pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0;
169    
170     return pressure;
171     }
172    
173    
174     void Thermo::getPressureTensor(double press[9]){
175     // returns pressure tensor in units amu*fs^-2*Ang^-1
176 gezelter 445 // routine derived via viral theorem description in:
177     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
178 mmeineke 377
179 gezelter 477 const double e_convert = 4.184e-4;
180 gezelter 483
181     double molmass, volume;
182 gezelter 468 double vcom[3];
183 gezelter 483 double p_local[9], p_global[9];
184 gezelter 468 double theBox[3];
185 mmeineke 486 //double* tau;
186 gezelter 468 int i, nMols;
187     Molecule* molecules;
188    
189     nMols = entry_plug->n_mol;
190     molecules = entry_plug->molecules;
191 mmeineke 486 //tau = entry_plug->tau;
192 gezelter 468
193     // use velocities of molecular centers of mass and molecular masses:
194 gezelter 483 for (i=0; i < 9; i++) {
195     p_local[i] = 0.0;
196     p_global[i] = 0.0;
197     }
198 gezelter 475
199 gezelter 468 for (i=0; i < nMols; i++) {
200 gezelter 475 molmass = molecules[i].getCOMvel(vcom);
201 gezelter 483
202     p_local[0] += molmass * (vcom[0] * vcom[0]);
203     p_local[1] += molmass * (vcom[0] * vcom[1]);
204     p_local[2] += molmass * (vcom[0] * vcom[2]);
205     p_local[3] += molmass * (vcom[1] * vcom[0]);
206     p_local[4] += molmass * (vcom[1] * vcom[1]);
207     p_local[5] += molmass * (vcom[1] * vcom[2]);
208     p_local[6] += molmass * (vcom[2] * vcom[0]);
209     p_local[7] += molmass * (vcom[2] * vcom[1]);
210     p_local[8] += molmass * (vcom[2] * vcom[2]);
211 gezelter 468 }
212    
213     // Get total for entire system from MPI.
214 chuckv 479
215 gezelter 468 #ifdef IS_MPI
216 gezelter 483 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
217 gezelter 468 #else
218 gezelter 483 for (i=0; i<9; i++) {
219     p_global[i] = p_local[i];
220     }
221 gezelter 468 #endif // is_mpi
222    
223 mmeineke 572 volume = entry_plug->boxVol;
224 gezelter 468
225 gezelter 483 for(i=0; i<9; i++) {
226 mmeineke 486 press[i] = (p_global[i] - entry_plug->tau[i]*e_convert) / volume;
227 gezelter 483 }
228 mmeineke 377 }
229    
230     void Thermo::velocitize() {
231    
232     double x,y;
233     double vx, vy, vz;
234     double jx, jy, jz;
235     int i, vr, vd; // velocity randomizer loop counters
236 chuckv 403 double vdrift[3];
237 mmeineke 377 double vbar;
238     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
239     double av2;
240     double kebar;
241     int n_atoms;
242     Atom** atoms;
243     DirectionalAtom* dAtom;
244     double temperature;
245     int n_oriented;
246     int n_constraints;
247    
248     atoms = entry_plug->atoms;
249     n_atoms = entry_plug->n_atoms;
250     temperature = entry_plug->target_temp;
251     n_oriented = entry_plug->n_oriented;
252     n_constraints = entry_plug->n_constraints;
253    
254 gezelter 458 kebar = kb * temperature * (double)entry_plug->ndf /
255     ( 2.0 * (double)entry_plug->ndfRaw );
256 chuckv 403
257 mmeineke 377 for(vr = 0; vr < n_atoms; vr++){
258    
259     // uses equipartition theory to solve for vbar in angstrom/fs
260    
261     av2 = 2.0 * kebar / atoms[vr]->getMass();
262     vbar = sqrt( av2 );
263 gezelter 444
264 mmeineke 377 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
265    
266     // picks random velocities from a gaussian distribution
267     // centered on vbar
268    
269     vx = vbar * gaussStream->getGaussian();
270     vy = vbar * gaussStream->getGaussian();
271     vz = vbar * gaussStream->getGaussian();
272    
273     atoms[vr]->set_vx( vx );
274     atoms[vr]->set_vy( vy );
275     atoms[vr]->set_vz( vz );
276     }
277 chuckv 401
278     // Get the Center of Mass drift velocity.
279    
280 chuckv 403 getCOMVel(vdrift);
281 mmeineke 377
282     // Corrects for the center of mass drift.
283     // sums all the momentum and divides by total mass.
284    
285     for(vd = 0; vd < n_atoms; vd++){
286    
287     vx = atoms[vd]->get_vx();
288     vy = atoms[vd]->get_vy();
289     vz = atoms[vd]->get_vz();
290 chuckv 401
291 mmeineke 377 vx -= vdrift[0];
292     vy -= vdrift[1];
293     vz -= vdrift[2];
294    
295     atoms[vd]->set_vx(vx);
296     atoms[vd]->set_vy(vy);
297     atoms[vd]->set_vz(vz);
298     }
299     if( n_oriented ){
300    
301     for( i=0; i<n_atoms; i++ ){
302    
303     if( atoms[i]->isDirectional() ){
304    
305     dAtom = (DirectionalAtom *)atoms[i];
306    
307     vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
308     jx = vbar * gaussStream->getGaussian();
309    
310     vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
311     jy = vbar * gaussStream->getGaussian();
312 gezelter 454
313 mmeineke 377 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
314     jz = vbar * gaussStream->getGaussian();
315    
316     dAtom->setJx( jx );
317     dAtom->setJy( jy );
318     dAtom->setJz( jz );
319     }
320     }
321     }
322     }
323 chuckv 401
324 chuckv 403 void Thermo::getCOMVel(double vdrift[3]){
325 chuckv 401
326     double mtot, mtot_local;
327     double vdrift_local[3];
328     int vd, n_atoms;
329     Atom** atoms;
330    
331     // We are very careless here with the distinction between n_atoms and n_local
332     // We should really fix this before someone pokes an eye out.
333    
334     n_atoms = entry_plug->n_atoms;
335     atoms = entry_plug->atoms;
336    
337     mtot_local = 0.0;
338     vdrift_local[0] = 0.0;
339     vdrift_local[1] = 0.0;
340     vdrift_local[2] = 0.0;
341    
342     for(vd = 0; vd < n_atoms; vd++){
343    
344     vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
345     vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
346     vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
347    
348     mtot_local += atoms[vd]->getMass();
349     }
350    
351     #ifdef IS_MPI
352 mmeineke 447 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
353     MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
354 chuckv 401 #else
355     mtot = mtot_local;
356     for(vd = 0; vd < 3; vd++) {
357     vdrift[vd] = vdrift_local[vd];
358     }
359     #endif
360    
361     for (vd = 0; vd < 3; vd++) {
362     vdrift[vd] = vdrift[vd] / mtot;
363     }
364    
365     }
366