ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 799
Committed: Fri Oct 3 22:11:53 2003 UTC (20 years, 9 months ago) by mmeineke
File size: 9068 byte(s)
Log Message:
removed entahlpy from the statwriter and thermo.

File Contents

# User Rev Content
1 mmeineke 377 #include <cmath>
2     #include <iostream>
3     using namespace std;
4    
5     #ifdef IS_MPI
6     #include <mpi.h>
7     #endif //is_mpi
8    
9     #include "Thermo.hpp"
10     #include "SRI.hpp"
11     #include "Integrator.hpp"
12 chuckv 438 #include "simError.h"
13 mmeineke 402
14     #ifdef IS_MPI
15 chuckv 401 #define __C
16 mmeineke 402 #include "mpiSimulation.hpp"
17     #endif // is_mpi
18 mmeineke 377
19 mmeineke 614 Thermo::Thermo( SimInfo* the_info ) {
20     info = the_info;
21 tim 708 int baseSeed = the_info->getSeed();
22 mmeineke 377
23     gaussStream = new gaussianSPRNG( baseSeed );
24     }
25    
26     Thermo::~Thermo(){
27     delete gaussStream;
28     }
29    
30     double Thermo::getKinetic(){
31    
32     const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
33 gezelter 608 double kinetic;
34     double amass;
35     double aVel[3], aJ[3], I[3][3];
36     int j, kl;
37 mmeineke 377
38     DirectionalAtom *dAtom;
39    
40     int n_atoms;
41     double kinetic_global;
42     Atom** atoms;
43    
44    
45 mmeineke 614 n_atoms = info->n_atoms;
46     atoms = info->atoms;
47 mmeineke 377
48     kinetic = 0.0;
49     kinetic_global = 0.0;
50     for( kl=0; kl < n_atoms; kl++ ){
51 gezelter 608
52     atoms[kl]->getVel(aVel);
53     amass = atoms[kl]->getMass();
54    
55     for (j=0; j < 3; j++)
56     kinetic += amass * aVel[j] * aVel[j];
57 mmeineke 377
58     if( atoms[kl]->isDirectional() ){
59    
60     dAtom = (DirectionalAtom *)atoms[kl];
61 gezelter 608
62     dAtom->getJ( aJ );
63     dAtom->getI( I );
64 mmeineke 377
65 gezelter 608 for (j=0; j<3; j++)
66     kinetic += aJ[j]*aJ[j] / I[j][j];
67 mmeineke 377
68     }
69     }
70     #ifdef IS_MPI
71 mmeineke 447 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
72     MPI_SUM, MPI_COMM_WORLD);
73 mmeineke 377 kinetic = kinetic_global;
74     #endif //is_mpi
75    
76     kinetic = kinetic * 0.5 / e_convert;
77    
78     return kinetic;
79     }
80    
81     double Thermo::getPotential(){
82    
83 chuckv 401 double potential_local;
84 mmeineke 377 double potential;
85     int el, nSRI;
86 mmeineke 428 Molecule* molecules;
87 mmeineke 377
88 mmeineke 614 molecules = info->molecules;
89     nSRI = info->n_SRI;
90 mmeineke 377
91 chuckv 401 potential_local = 0.0;
92 chuckv 438 potential = 0.0;
93 mmeineke 614 potential_local += info->lrPot;
94 mmeineke 377
95 mmeineke 614 for( el=0; el<info->n_mol; el++ ){
96 mmeineke 428 potential_local += molecules[el].getPotential();
97 mmeineke 377 }
98    
99     // Get total potential for entire system from MPI.
100     #ifdef IS_MPI
101 mmeineke 447 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
102     MPI_SUM, MPI_COMM_WORLD);
103 chuckv 401 #else
104     potential = potential_local;
105 mmeineke 377 #endif // is_mpi
106    
107 chuckv 438 #ifdef IS_MPI
108     /*
109     std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
110     */
111     #endif
112    
113 mmeineke 377 return potential;
114     }
115    
116     double Thermo::getTotalE(){
117    
118     double total;
119    
120     total = this->getKinetic() + this->getPotential();
121     return total;
122     }
123    
124 gezelter 454 double Thermo::getTemperature(){
125    
126 tim 763 const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
127 gezelter 454 double temperature;
128    
129 mmeineke 614 temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
130 mmeineke 377 return temperature;
131     }
132    
133 gezelter 484 double Thermo::getVolume() {
134 gezelter 574
135 mmeineke 614 return info->boxVol;
136 gezelter 484 }
137    
138 gezelter 483 double Thermo::getPressure() {
139 gezelter 574
140 gezelter 483 // Relies on the calculation of the full molecular pressure tensor
141    
142     const double p_convert = 1.63882576e8;
143 gezelter 588 double press[3][3];
144 gezelter 483 double pressure;
145    
146     this->getPressureTensor(press);
147    
148 gezelter 588 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
149 gezelter 483
150     return pressure;
151     }
152    
153 mmeineke 755 double Thermo::getPressureX() {
154 gezelter 483
155 mmeineke 755 // Relies on the calculation of the full molecular pressure tensor
156    
157     const double p_convert = 1.63882576e8;
158     double press[3][3];
159     double pressureX;
160    
161     this->getPressureTensor(press);
162    
163     pressureX = p_convert * press[0][0];
164    
165     return pressureX;
166     }
167    
168     double Thermo::getPressureY() {
169    
170     // Relies on the calculation of the full molecular pressure tensor
171    
172     const double p_convert = 1.63882576e8;
173     double press[3][3];
174     double pressureY;
175    
176     this->getPressureTensor(press);
177    
178     pressureY = p_convert * press[1][1];
179    
180     return pressureY;
181     }
182    
183     double Thermo::getPressureZ() {
184    
185     // Relies on the calculation of the full molecular pressure tensor
186    
187     const double p_convert = 1.63882576e8;
188     double press[3][3];
189     double pressureZ;
190    
191     this->getPressureTensor(press);
192    
193     pressureZ = p_convert * press[2][2];
194    
195     return pressureZ;
196     }
197    
198    
199 gezelter 588 void Thermo::getPressureTensor(double press[3][3]){
200 gezelter 483 // returns pressure tensor in units amu*fs^-2*Ang^-1
201 gezelter 445 // routine derived via viral theorem description in:
202     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
203 mmeineke 377
204 gezelter 477 const double e_convert = 4.184e-4;
205 gezelter 483
206     double molmass, volume;
207 gezelter 468 double vcom[3];
208 gezelter 483 double p_local[9], p_global[9];
209 mmeineke 614 int i, j, k, nMols;
210 gezelter 468 Molecule* molecules;
211    
212 mmeineke 614 nMols = info->n_mol;
213     molecules = info->molecules;
214     //tau = info->tau;
215 gezelter 468
216     // use velocities of molecular centers of mass and molecular masses:
217 gezelter 483 for (i=0; i < 9; i++) {
218     p_local[i] = 0.0;
219     p_global[i] = 0.0;
220     }
221 gezelter 475
222 gezelter 468 for (i=0; i < nMols; i++) {
223 gezelter 475 molmass = molecules[i].getCOMvel(vcom);
224 gezelter 483
225     p_local[0] += molmass * (vcom[0] * vcom[0]);
226     p_local[1] += molmass * (vcom[0] * vcom[1]);
227     p_local[2] += molmass * (vcom[0] * vcom[2]);
228     p_local[3] += molmass * (vcom[1] * vcom[0]);
229     p_local[4] += molmass * (vcom[1] * vcom[1]);
230     p_local[5] += molmass * (vcom[1] * vcom[2]);
231     p_local[6] += molmass * (vcom[2] * vcom[0]);
232     p_local[7] += molmass * (vcom[2] * vcom[1]);
233     p_local[8] += molmass * (vcom[2] * vcom[2]);
234 gezelter 468 }
235    
236     // Get total for entire system from MPI.
237 chuckv 479
238 gezelter 468 #ifdef IS_MPI
239 gezelter 483 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
240 gezelter 468 #else
241 gezelter 483 for (i=0; i<9; i++) {
242     p_global[i] = p_local[i];
243     }
244 gezelter 468 #endif // is_mpi
245    
246 gezelter 611 volume = this->getVolume();
247 gezelter 468
248 gezelter 588 for(i = 0; i < 3; i++) {
249     for (j = 0; j < 3; j++) {
250     k = 3*i + j;
251 mmeineke 614 press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
252    
253 gezelter 588 }
254 gezelter 483 }
255 mmeineke 377 }
256    
257     void Thermo::velocitize() {
258    
259 gezelter 608 double aVel[3], aJ[3], I[3][3];
260     int i, j, vr, vd; // velocity randomizer loop counters
261 chuckv 403 double vdrift[3];
262 mmeineke 377 double vbar;
263     const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
264     double av2;
265     double kebar;
266     int n_atoms;
267     Atom** atoms;
268     DirectionalAtom* dAtom;
269     double temperature;
270     int n_oriented;
271     int n_constraints;
272    
273 mmeineke 614 atoms = info->atoms;
274     n_atoms = info->n_atoms;
275     temperature = info->target_temp;
276     n_oriented = info->n_oriented;
277     n_constraints = info->n_constraints;
278 mmeineke 377
279 tim 763 kebar = kb * temperature * (double)info->ndfRaw /
280     ( 2.0 * (double)info->ndf );
281 chuckv 403
282 mmeineke 377 for(vr = 0; vr < n_atoms; vr++){
283    
284     // uses equipartition theory to solve for vbar in angstrom/fs
285    
286     av2 = 2.0 * kebar / atoms[vr]->getMass();
287     vbar = sqrt( av2 );
288 gezelter 444
289 mmeineke 377 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
290    
291     // picks random velocities from a gaussian distribution
292     // centered on vbar
293    
294 gezelter 608 for (j=0; j<3; j++)
295     aVel[j] = vbar * gaussStream->getGaussian();
296    
297     atoms[vr]->setVel( aVel );
298 mmeineke 377
299     }
300 chuckv 401
301     // Get the Center of Mass drift velocity.
302    
303 chuckv 403 getCOMVel(vdrift);
304 mmeineke 377
305     // Corrects for the center of mass drift.
306     // sums all the momentum and divides by total mass.
307    
308     for(vd = 0; vd < n_atoms; vd++){
309    
310 gezelter 608 atoms[vd]->getVel(aVel);
311    
312     for (j=0; j < 3; j++)
313     aVel[j] -= vdrift[j];
314 chuckv 401
315 gezelter 608 atoms[vd]->setVel( aVel );
316 mmeineke 377 }
317     if( n_oriented ){
318    
319     for( i=0; i<n_atoms; i++ ){
320    
321     if( atoms[i]->isDirectional() ){
322    
323     dAtom = (DirectionalAtom *)atoms[i];
324 gezelter 608 dAtom->getI( I );
325    
326     for (j = 0 ; j < 3; j++) {
327 mmeineke 377
328 gezelter 608 vbar = sqrt( 2.0 * kebar * I[j][j] );
329     aJ[j] = vbar * gaussStream->getGaussian();
330 mmeineke 377
331 gezelter 608 }
332    
333     dAtom->setJ( aJ );
334    
335 mmeineke 377 }
336     }
337     }
338     }
339 chuckv 401
340 chuckv 403 void Thermo::getCOMVel(double vdrift[3]){
341 chuckv 401
342     double mtot, mtot_local;
343 gezelter 608 double aVel[3], amass;
344 chuckv 401 double vdrift_local[3];
345 gezelter 608 int vd, n_atoms, j;
346 chuckv 401 Atom** atoms;
347    
348     // We are very careless here with the distinction between n_atoms and n_local
349     // We should really fix this before someone pokes an eye out.
350    
351 mmeineke 614 n_atoms = info->n_atoms;
352     atoms = info->atoms;
353 chuckv 401
354     mtot_local = 0.0;
355     vdrift_local[0] = 0.0;
356     vdrift_local[1] = 0.0;
357     vdrift_local[2] = 0.0;
358    
359     for(vd = 0; vd < n_atoms; vd++){
360    
361 gezelter 608 amass = atoms[vd]->getMass();
362     atoms[vd]->getVel( aVel );
363    
364     for(j = 0; j < 3; j++)
365     vdrift_local[j] += aVel[j] * amass;
366 chuckv 401
367 gezelter 608 mtot_local += amass;
368 chuckv 401 }
369    
370     #ifdef IS_MPI
371 mmeineke 447 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
372     MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
373 chuckv 401 #else
374     mtot = mtot_local;
375     for(vd = 0; vd < 3; vd++) {
376     vdrift[vd] = vdrift_local[vd];
377     }
378     #endif
379    
380     for (vd = 0; vd < 3; vd++) {
381     vdrift[vd] = vdrift[vd] / mtot;
382     }
383    
384     }
385    
386 tim 763 void Thermo::getCOM(double COM[3]){
387    
388     double mtot, mtot_local;
389     double aPos[3], amass;
390     double COM_local[3];
391     int i, n_atoms, j;
392     Atom** atoms;
393    
394     // We are very careless here with the distinction between n_atoms and n_local
395     // We should really fix this before someone pokes an eye out.
396    
397     n_atoms = info->n_atoms;
398     atoms = info->atoms;
399    
400     mtot_local = 0.0;
401     COM_local[0] = 0.0;
402     COM_local[1] = 0.0;
403     COM_local[2] = 0.0;
404    
405     for(i = 0; i < n_atoms; i++){
406    
407     amass = atoms[i]->getMass();
408     atoms[i]->getPos( aPos );
409    
410     for(j = 0; j < 3; j++)
411     COM_local[j] += aPos[j] * amass;
412    
413     mtot_local += amass;
414     }
415    
416     #ifdef IS_MPI
417     MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
418     MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
419     #else
420     mtot = mtot_local;
421     for(i = 0; i < 3; i++) {
422     COM[i] = COM_local[i];
423     }
424     #endif
425    
426     for (i = 0; i < 3; i++) {
427     COM[i] = COM[i] / mtot;
428     }
429     }