ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 853
Committed: Thu Nov 6 19:11:38 2003 UTC (20 years, 8 months ago) by mmeineke
File size: 8882 byte(s)
Log Message:
did a merge by hand from the new-templateless branch to the main trunk.

bug Fixes include:
  * fixed the switching function from ortho to non-ortho box.
         !!!!! THis was responsible for all of the sudden deaths we saw.
  * some formating in the string when we write out the extended system state.
  * added NPT.cpp to the makefile.in

File Contents

# Content
1 #include <math.h>
2 #include <iostream>
3 using namespace std;
4
5 #ifdef IS_MPI
6 #include <mpi.h>
7 #endif //is_mpi
8
9 #include "Thermo.hpp"
10 #include "SRI.hpp"
11 #include "Integrator.hpp"
12 #include "simError.h"
13
14 #ifdef IS_MPI
15 #define __C
16 #include "mpiSimulation.hpp"
17 #endif // is_mpi
18
19 Thermo::Thermo( SimInfo* the_info ) {
20 info = the_info;
21 int baseSeed = the_info->getSeed();
22
23 gaussStream = new gaussianSPRNG( baseSeed );
24 }
25
26 Thermo::~Thermo(){
27 delete gaussStream;
28 }
29
30 double Thermo::getKinetic(){
31
32 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
33 double kinetic;
34 double amass;
35 double aVel[3], aJ[3], I[3][3];
36 int j, kl;
37
38 DirectionalAtom *dAtom;
39
40 int n_atoms;
41 double kinetic_global;
42 Atom** atoms;
43
44
45 n_atoms = info->n_atoms;
46 atoms = info->atoms;
47
48 kinetic = 0.0;
49 kinetic_global = 0.0;
50 for( kl=0; kl < n_atoms; kl++ ){
51
52 atoms[kl]->getVel(aVel);
53 amass = atoms[kl]->getMass();
54
55 for (j=0; j < 3; j++)
56 kinetic += amass * aVel[j] * aVel[j];
57
58 if( atoms[kl]->isDirectional() ){
59
60 dAtom = (DirectionalAtom *)atoms[kl];
61
62 dAtom->getJ( aJ );
63 dAtom->getI( I );
64
65 for (j=0; j<3; j++)
66 kinetic += aJ[j]*aJ[j] / I[j][j];
67
68 }
69 }
70 #ifdef IS_MPI
71 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
72 MPI_SUM, MPI_COMM_WORLD);
73 kinetic = kinetic_global;
74 #endif //is_mpi
75
76 kinetic = kinetic * 0.5 / e_convert;
77
78 return kinetic;
79 }
80
81 double Thermo::getPotential(){
82
83 double potential_local;
84 double potential;
85 int el, nSRI;
86 Molecule* molecules;
87
88 molecules = info->molecules;
89 nSRI = info->n_SRI;
90
91 potential_local = 0.0;
92 potential = 0.0;
93 potential_local += info->lrPot;
94
95 for( el=0; el<info->n_mol; el++ ){
96 potential_local += molecules[el].getPotential();
97 }
98
99 // Get total potential for entire system from MPI.
100 #ifdef IS_MPI
101 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
102 MPI_SUM, MPI_COMM_WORLD);
103 #else
104 potential = potential_local;
105 #endif // is_mpi
106
107 return potential;
108 }
109
110 double Thermo::getTotalE(){
111
112 double total;
113
114 total = this->getKinetic() + this->getPotential();
115 return total;
116 }
117
118 double Thermo::getTemperature(){
119
120 const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
121 double temperature;
122
123 temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
124 return temperature;
125 }
126
127 double Thermo::getVolume() {
128
129 return info->boxVol;
130 }
131
132 double Thermo::getPressure() {
133
134 // Relies on the calculation of the full molecular pressure tensor
135
136 const double p_convert = 1.63882576e8;
137 double press[3][3];
138 double pressure;
139
140 this->getPressureTensor(press);
141
142 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
143
144 return pressure;
145 }
146
147 double Thermo::getPressureX() {
148
149 // Relies on the calculation of the full molecular pressure tensor
150
151 const double p_convert = 1.63882576e8;
152 double press[3][3];
153 double pressureX;
154
155 this->getPressureTensor(press);
156
157 pressureX = p_convert * press[0][0];
158
159 return pressureX;
160 }
161
162 double Thermo::getPressureY() {
163
164 // Relies on the calculation of the full molecular pressure tensor
165
166 const double p_convert = 1.63882576e8;
167 double press[3][3];
168 double pressureY;
169
170 this->getPressureTensor(press);
171
172 pressureY = p_convert * press[1][1];
173
174 return pressureY;
175 }
176
177 double Thermo::getPressureZ() {
178
179 // Relies on the calculation of the full molecular pressure tensor
180
181 const double p_convert = 1.63882576e8;
182 double press[3][3];
183 double pressureZ;
184
185 this->getPressureTensor(press);
186
187 pressureZ = p_convert * press[2][2];
188
189 return pressureZ;
190 }
191
192
193 void Thermo::getPressureTensor(double press[3][3]){
194 // returns pressure tensor in units amu*fs^-2*Ang^-1
195 // routine derived via viral theorem description in:
196 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
197
198 const double e_convert = 4.184e-4;
199
200 double molmass, volume;
201 double vcom[3];
202 double p_local[9], p_global[9];
203 int i, j, k, nMols;
204 Molecule* molecules;
205
206 nMols = info->n_mol;
207 molecules = info->molecules;
208 //tau = info->tau;
209
210 // use velocities of molecular centers of mass and molecular masses:
211 for (i=0; i < 9; i++) {
212 p_local[i] = 0.0;
213 p_global[i] = 0.0;
214 }
215
216 for (i=0; i < nMols; i++) {
217 molmass = molecules[i].getCOMvel(vcom);
218
219 p_local[0] += molmass * (vcom[0] * vcom[0]);
220 p_local[1] += molmass * (vcom[0] * vcom[1]);
221 p_local[2] += molmass * (vcom[0] * vcom[2]);
222 p_local[3] += molmass * (vcom[1] * vcom[0]);
223 p_local[4] += molmass * (vcom[1] * vcom[1]);
224 p_local[5] += molmass * (vcom[1] * vcom[2]);
225 p_local[6] += molmass * (vcom[2] * vcom[0]);
226 p_local[7] += molmass * (vcom[2] * vcom[1]);
227 p_local[8] += molmass * (vcom[2] * vcom[2]);
228 }
229
230 // Get total for entire system from MPI.
231
232 #ifdef IS_MPI
233 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
234 #else
235 for (i=0; i<9; i++) {
236 p_global[i] = p_local[i];
237 }
238 #endif // is_mpi
239
240 volume = this->getVolume();
241
242 for(i = 0; i < 3; i++) {
243 for (j = 0; j < 3; j++) {
244 k = 3*i + j;
245 press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
246
247 }
248 }
249 }
250
251 void Thermo::velocitize() {
252
253 double aVel[3], aJ[3], I[3][3];
254 int i, j, vr, vd; // velocity randomizer loop counters
255 double vdrift[3];
256 double vbar;
257 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
258 double av2;
259 double kebar;
260 int n_atoms;
261 Atom** atoms;
262 DirectionalAtom* dAtom;
263 double temperature;
264 int n_oriented;
265 int n_constraints;
266
267 atoms = info->atoms;
268 n_atoms = info->n_atoms;
269 temperature = info->target_temp;
270 n_oriented = info->n_oriented;
271 n_constraints = info->n_constraints;
272
273 kebar = kb * temperature * (double)info->ndfRaw /
274 ( 2.0 * (double)info->ndf );
275
276 for(vr = 0; vr < n_atoms; vr++){
277
278 // uses equipartition theory to solve for vbar in angstrom/fs
279
280 av2 = 2.0 * kebar / atoms[vr]->getMass();
281 vbar = sqrt( av2 );
282
283 // picks random velocities from a gaussian distribution
284 // centered on vbar
285
286 for (j=0; j<3; j++)
287 aVel[j] = vbar * gaussStream->getGaussian();
288
289 atoms[vr]->setVel( aVel );
290
291 }
292
293 // Get the Center of Mass drift velocity.
294
295 getCOMVel(vdrift);
296
297 // Corrects for the center of mass drift.
298 // sums all the momentum and divides by total mass.
299
300 for(vd = 0; vd < n_atoms; vd++){
301
302 atoms[vd]->getVel(aVel);
303
304 for (j=0; j < 3; j++)
305 aVel[j] -= vdrift[j];
306
307 atoms[vd]->setVel( aVel );
308 }
309 if( n_oriented ){
310
311 for( i=0; i<n_atoms; i++ ){
312
313 if( atoms[i]->isDirectional() ){
314
315 dAtom = (DirectionalAtom *)atoms[i];
316 dAtom->getI( I );
317
318 for (j = 0 ; j < 3; j++) {
319
320 vbar = sqrt( 2.0 * kebar * I[j][j] );
321 aJ[j] = vbar * gaussStream->getGaussian();
322
323 }
324
325 dAtom->setJ( aJ );
326
327 }
328 }
329 }
330 }
331
332 void Thermo::getCOMVel(double vdrift[3]){
333
334 double mtot, mtot_local;
335 double aVel[3], amass;
336 double vdrift_local[3];
337 int vd, n_atoms, j;
338 Atom** atoms;
339
340 // We are very careless here with the distinction between n_atoms and n_local
341 // We should really fix this before someone pokes an eye out.
342
343 n_atoms = info->n_atoms;
344 atoms = info->atoms;
345
346 mtot_local = 0.0;
347 vdrift_local[0] = 0.0;
348 vdrift_local[1] = 0.0;
349 vdrift_local[2] = 0.0;
350
351 for(vd = 0; vd < n_atoms; vd++){
352
353 amass = atoms[vd]->getMass();
354 atoms[vd]->getVel( aVel );
355
356 for(j = 0; j < 3; j++)
357 vdrift_local[j] += aVel[j] * amass;
358
359 mtot_local += amass;
360 }
361
362 #ifdef IS_MPI
363 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
364 MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
365 #else
366 mtot = mtot_local;
367 for(vd = 0; vd < 3; vd++) {
368 vdrift[vd] = vdrift_local[vd];
369 }
370 #endif
371
372 for (vd = 0; vd < 3; vd++) {
373 vdrift[vd] = vdrift[vd] / mtot;
374 }
375
376 }
377
378 void Thermo::getCOM(double COM[3]){
379
380 double mtot, mtot_local;
381 double aPos[3], amass;
382 double COM_local[3];
383 int i, n_atoms, j;
384 Atom** atoms;
385
386 // We are very careless here with the distinction between n_atoms and n_local
387 // We should really fix this before someone pokes an eye out.
388
389 n_atoms = info->n_atoms;
390 atoms = info->atoms;
391
392 mtot_local = 0.0;
393 COM_local[0] = 0.0;
394 COM_local[1] = 0.0;
395 COM_local[2] = 0.0;
396
397 for(i = 0; i < n_atoms; i++){
398
399 amass = atoms[i]->getMass();
400 atoms[i]->getPos( aPos );
401
402 for(j = 0; j < 3; j++)
403 COM_local[j] += aPos[j] * amass;
404
405 mtot_local += amass;
406 }
407
408 #ifdef IS_MPI
409 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
410 MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
411 #else
412 mtot = mtot_local;
413 for(i = 0; i < 3; i++) {
414 COM[i] = COM_local[i];
415 }
416 #endif
417
418 for (i = 0; i < 3; i++) {
419 COM[i] = COM[i] / mtot;
420 }
421 }