ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 1133
Committed: Mon Apr 26 14:29:18 2004 UTC (20 years, 2 months ago) by gezelter
File size: 10349 byte(s)
Log Message:
Fixed a bug in calc_charge_charge.F90

File Contents

# Content
1 #include <math.h>
2 #include <iostream>
3 using namespace std;
4
5 #ifdef IS_MPI
6 #include <mpi.h>
7 #endif //is_mpi
8
9 #include "Thermo.hpp"
10 #include "SRI.hpp"
11 #include "Integrator.hpp"
12 #include "simError.h"
13 #include "MatVec3.h"
14
15 #ifdef IS_MPI
16 #define __C
17 #include "mpiSimulation.hpp"
18 #endif // is_mpi
19
20 inline double roundMe( double x ){
21 return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 }
23
24 Thermo::Thermo( SimInfo* the_info ) {
25 info = the_info;
26 int baseSeed = the_info->getSeed();
27
28 gaussStream = new gaussianSPRNG( baseSeed );
29 }
30
31 Thermo::~Thermo(){
32 delete gaussStream;
33 }
34
35 double Thermo::getKinetic(){
36
37 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 double kinetic;
39 double amass;
40 double aVel[3], aJ[3], I[3][3];
41 int i, j, k, kl;
42
43 double kinetic_global;
44 vector<StuntDouble *> integrableObjects = info->integrableObjects;
45
46 kinetic = 0.0;
47 kinetic_global = 0.0;
48
49 for (kl=0; kl<integrableObjects.size(); kl++) {
50 integrableObjects[kl]->getVel(aVel);
51 amass = integrableObjects[kl]->getMass();
52
53 for(j=0; j<3; j++)
54 kinetic += amass*aVel[j]*aVel[j];
55
56 if (integrableObjects[kl]->isDirectional()){
57
58 integrableObjects[kl]->getJ( aJ );
59 integrableObjects[kl]->getI( I );
60
61 if (integrableObjects[kl]->isLinear()) {
62 i = integrableObjects[kl]->linearAxis();
63 j = (i+1)%3;
64 k = (i+2)%3;
65 kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 } else {
67 for (j=0; j<3; j++)
68 kinetic += aJ[j]*aJ[j] / I[j][j];
69 }
70 }
71 }
72 #ifdef IS_MPI
73 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74 MPI_SUM, MPI_COMM_WORLD);
75 kinetic = kinetic_global;
76 #endif //is_mpi
77
78 kinetic = kinetic * 0.5 / e_convert;
79
80 return kinetic;
81 }
82
83 double Thermo::getPotential(){
84
85 double potential_local;
86 double potential;
87 int el, nSRI;
88 Molecule* molecules;
89
90 molecules = info->molecules;
91 nSRI = info->n_SRI;
92
93 potential_local = 0.0;
94 potential = 0.0;
95 potential_local += info->lrPot;
96
97 for( el=0; el<info->n_mol; el++ ){
98 potential_local += molecules[el].getPotential();
99 }
100
101 // Get total potential for entire system from MPI.
102 #ifdef IS_MPI
103 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 MPI_SUM, MPI_COMM_WORLD);
105 #else
106 potential = potential_local;
107 #endif // is_mpi
108
109 return potential;
110 }
111
112 double Thermo::getTotalE(){
113
114 double total;
115
116 total = this->getKinetic() + this->getPotential();
117 return total;
118 }
119
120 double Thermo::getTemperature(){
121
122 const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123 double temperature;
124
125 temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 return temperature;
127 }
128
129 double Thermo::getVolume() {
130
131 return info->boxVol;
132 }
133
134 double Thermo::getPressure() {
135
136 // Relies on the calculation of the full molecular pressure tensor
137
138 const double p_convert = 1.63882576e8;
139 double press[3][3];
140 double pressure;
141
142 this->getPressureTensor(press);
143
144 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
145
146 return pressure;
147 }
148
149 double Thermo::getPressureX() {
150
151 // Relies on the calculation of the full molecular pressure tensor
152
153 const double p_convert = 1.63882576e8;
154 double press[3][3];
155 double pressureX;
156
157 this->getPressureTensor(press);
158
159 pressureX = p_convert * press[0][0];
160
161 return pressureX;
162 }
163
164 double Thermo::getPressureY() {
165
166 // Relies on the calculation of the full molecular pressure tensor
167
168 const double p_convert = 1.63882576e8;
169 double press[3][3];
170 double pressureY;
171
172 this->getPressureTensor(press);
173
174 pressureY = p_convert * press[1][1];
175
176 return pressureY;
177 }
178
179 double Thermo::getPressureZ() {
180
181 // Relies on the calculation of the full molecular pressure tensor
182
183 const double p_convert = 1.63882576e8;
184 double press[3][3];
185 double pressureZ;
186
187 this->getPressureTensor(press);
188
189 pressureZ = p_convert * press[2][2];
190
191 return pressureZ;
192 }
193
194
195 void Thermo::getPressureTensor(double press[3][3]){
196 // returns pressure tensor in units amu*fs^-2*Ang^-1
197 // routine derived via viral theorem description in:
198 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199
200 const double e_convert = 4.184e-4;
201
202 double molmass, volume;
203 double vcom[3], pcom[3], fcom[3], scaled[3];
204 double p_local[9], p_global[9];
205 int i, j, k, nMols;
206 Molecule* molecules;
207
208 nMols = info->n_mol;
209 molecules = info->molecules;
210 //tau = info->tau;
211
212 // use velocities of molecular centers of mass and molecular masses:
213 for (i=0; i < 9; i++) {
214 p_local[i] = 0.0;
215 p_global[i] = 0.0;
216 }
217
218 for (i=0; i < info->integrableObjects.size(); i++) {
219
220 molmass = info->integrableObjects[i]->getMass();
221
222 info->integrableObjects[i]->getVel(vcom);
223 info->integrableObjects[i]->getPos(pcom);
224 info->integrableObjects[i]->getFrc(fcom);
225
226 matVecMul3(info->HmatInv, pcom, scaled);
227
228 for(j=0; j<3; j++)
229 scaled[j] -= roundMe(scaled[j]);
230
231 // calc the wrapped real coordinates from the wrapped scaled coordinates
232
233 matVecMul3(info->Hmat, scaled, pcom);
234
235 p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert;
236 p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert;
237 p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert;
238 p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert;
239 p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert;
240 p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert;
241 p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert;
242 p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert;
243 p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert;
244
245 }
246
247 // Get total for entire system from MPI.
248
249 #ifdef IS_MPI
250 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
251 #else
252 for (i=0; i<9; i++) {
253 p_global[i] = p_local[i];
254 }
255 #endif // is_mpi
256
257 volume = this->getVolume();
258
259 for(i = 0; i < 3; i++) {
260 for (j = 0; j < 3; j++) {
261 k = 3*i + j;
262 press[i][j] = p_global[k] / volume;
263
264 }
265 }
266 }
267
268 void Thermo::velocitize() {
269
270 double aVel[3], aJ[3], I[3][3];
271 int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
272 double vdrift[3];
273 double vbar;
274 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
275 double av2;
276 double kebar;
277 double temperature;
278 int nobj;
279
280 nobj = info->integrableObjects.size();
281
282 temperature = info->target_temp;
283
284 kebar = kb * temperature * (double)info->ndfRaw /
285 ( 2.0 * (double)info->ndf );
286
287 for(vr = 0; vr < nobj; vr++){
288
289 // uses equipartition theory to solve for vbar in angstrom/fs
290
291 av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
292 vbar = sqrt( av2 );
293
294 // picks random velocities from a gaussian distribution
295 // centered on vbar
296
297 for (j=0; j<3; j++)
298 aVel[j] = vbar * gaussStream->getGaussian();
299
300 info->integrableObjects[vr]->setVel( aVel );
301
302 if(info->integrableObjects[vr]->isDirectional()){
303
304 info->integrableObjects[vr]->getI( I );
305
306 if (info->integrableObjects[vr]->isLinear()) {
307
308 l= info->integrableObjects[vr]->linearAxis();
309 m = (l+1)%3;
310 n = (l+2)%3;
311
312 aJ[l] = 0.0;
313 vbar = sqrt( 2.0 * kebar * I[m][m] );
314 aJ[m] = vbar * gaussStream->getGaussian();
315 vbar = sqrt( 2.0 * kebar * I[n][n] );
316 aJ[n] = vbar * gaussStream->getGaussian();
317
318 } else {
319 for (j = 0 ; j < 3; j++) {
320 vbar = sqrt( 2.0 * kebar * I[j][j] );
321 aJ[j] = vbar * gaussStream->getGaussian();
322 }
323 } // else isLinear
324
325 info->integrableObjects[vr]->setJ( aJ );
326
327 }//isDirectional
328
329 }
330
331 // Get the Center of Mass drift velocity.
332
333 getCOMVel(vdrift);
334
335 // Corrects for the center of mass drift.
336 // sums all the momentum and divides by total mass.
337
338 for(vd = 0; vd < nobj; vd++){
339
340 info->integrableObjects[vd]->getVel(aVel);
341
342 for (j=0; j < 3; j++)
343 aVel[j] -= vdrift[j];
344
345 info->integrableObjects[vd]->setVel( aVel );
346 }
347
348 }
349
350 void Thermo::getCOMVel(double vdrift[3]){
351
352 double mtot, mtot_local;
353 double aVel[3], amass;
354 double vdrift_local[3];
355 int vd, j;
356 int nobj;
357
358 nobj = info->integrableObjects.size();
359
360 mtot_local = 0.0;
361 vdrift_local[0] = 0.0;
362 vdrift_local[1] = 0.0;
363 vdrift_local[2] = 0.0;
364
365 for(vd = 0; vd < nobj; vd++){
366
367 amass = info->integrableObjects[vd]->getMass();
368 info->integrableObjects[vd]->getVel( aVel );
369
370 for(j = 0; j < 3; j++)
371 vdrift_local[j] += aVel[j] * amass;
372
373 mtot_local += amass;
374 }
375
376 #ifdef IS_MPI
377 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
378 MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
379 #else
380 mtot = mtot_local;
381 for(vd = 0; vd < 3; vd++) {
382 vdrift[vd] = vdrift_local[vd];
383 }
384 #endif
385
386 for (vd = 0; vd < 3; vd++) {
387 vdrift[vd] = vdrift[vd] / mtot;
388 }
389
390 }
391
392 void Thermo::getCOM(double COM[3]){
393
394 double mtot, mtot_local;
395 double aPos[3], amass;
396 double COM_local[3];
397 int i, j;
398 int nobj;
399
400 mtot_local = 0.0;
401 COM_local[0] = 0.0;
402 COM_local[1] = 0.0;
403 COM_local[2] = 0.0;
404
405 nobj = info->integrableObjects.size();
406 for(i = 0; i < nobj; i++){
407
408 amass = info->integrableObjects[i]->getMass();
409 info->integrableObjects[i]->getPos( aPos );
410
411 for(j = 0; j < 3; j++)
412 COM_local[j] += aPos[j] * amass;
413
414 mtot_local += amass;
415 }
416
417 #ifdef IS_MPI
418 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
419 MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
420 #else
421 mtot = mtot_local;
422 for(i = 0; i < 3; i++) {
423 COM[i] = COM_local[i];
424 }
425 #endif
426
427 for (i = 0; i < 3; i++) {
428 COM[i] = COM[i] / mtot;
429 }
430 }
431
432 void Thermo::removeCOMdrift() {
433 double vdrift[3], aVel[3];
434 int vd, j, nobj;
435
436 nobj = info->integrableObjects.size();
437
438 // Get the Center of Mass drift velocity.
439
440 getCOMVel(vdrift);
441
442 // Corrects for the center of mass drift.
443 // sums all the momentum and divides by total mass.
444
445 for(vd = 0; vd < nobj; vd++){
446
447 info->integrableObjects[vd]->getVel(aVel);
448
449 for (j=0; j < 3; j++)
450 aVel[j] -= vdrift[j];
451
452 info->integrableObjects[vd]->setVel( aVel );
453 }
454 }