ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 1125 by gezelter, Mon Apr 19 22:13:01 2004 UTC vs.
Revision 1133 by gezelter, Mon Apr 26 14:29:18 2004 UTC

# Line 10 | Line 10 | using namespace std;
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12   #include "simError.h"
13 + #include "MatVec3.h"
14  
15   #ifdef IS_MPI
16   #define __C
17   #include "mpiSimulation.hpp"
18   #endif // is_mpi
19  
20 + inline double roundMe( double x ){
21 +          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 + }
23 +
24   Thermo::Thermo( SimInfo* the_info ) {
25    info = the_info;
26    int baseSeed = the_info->getSeed();
# Line 195 | Line 200 | void Thermo::getPressureTensor(double press[3][3]){
200    const double e_convert = 4.184e-4;
201  
202    double molmass, volume;
203 <  double vcom[3];
203 >  double vcom[3], pcom[3], fcom[3], scaled[3];
204    double p_local[9], p_global[9];
205    int i, j, k, nMols;
206    Molecule* molecules;
# Line 210 | Line 215 | void Thermo::getPressureTensor(double press[3][3]){
215      p_global[i] = 0.0;
216    }
217  
218 <  for (i=0; i < nMols; i++) {
214 <    molmass = molecules[i].getCOMvel(vcom);
218 >  for (i=0; i < info->integrableObjects.size(); i++) {
219  
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
220 >    molmass = info->integrableObjects[i]->getMass();
221 >    
222 >    info->integrableObjects[i]->getVel(vcom);
223 >    info->integrableObjects[i]->getPos(pcom);
224 >    info->integrableObjects[i]->getFrc(fcom);
225 >
226 >    matVecMul3(info->HmatInv, pcom, scaled);
227 >  
228 >    for(j=0; j<3; j++)
229 >      scaled[j] -= roundMe(scaled[j]);
230 >
231 >    // calc the wrapped real coordinates from the wrapped scaled coordinates
232 >  
233 >    matVecMul3(info->Hmat, scaled, pcom);
234 >    
235 >    p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert;
236 >    p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert;
237 >    p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert;
238 >    p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert;
239 >    p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert;
240 >    p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert;
241 >    p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert;
242 >    p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert;
243 >    p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert;
244 >    
245    }
246  
247    // Get total for entire system from MPI.
# Line 239 | Line 259 | void Thermo::getPressureTensor(double press[3][3]){
259    for(i = 0; i < 3; i++) {
260      for (j = 0; j < 3; j++) {
261        k = 3*i + j;
262 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
262 >      press[i][j] = p_global[k] /  volume;
263  
264      }
265    }
# Line 248 | Line 268 | void Thermo::velocitize() {
268   void Thermo::velocitize() {
269    
270    double aVel[3], aJ[3], I[3][3];
271 <  int i, j, vr, vd; // velocity randomizer loop counters
271 >  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
272    double vdrift[3];
273    double vbar;
274    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
275    double av2;
276    double kebar;
257  int n_atoms;
258  Atom** atoms;
259  DirectionalAtom* dAtom;
277    double temperature;
278 <  int n_oriented;
262 <  int n_constraints;
278 >  int nobj;
279  
280 <  atoms         = info->atoms;
281 <  n_atoms       = info->n_atoms;
280 >  nobj = info->integrableObjects.size();
281 >  
282    temperature   = info->target_temp;
267  n_oriented    = info->n_oriented;
268  n_constraints = info->n_constraints;
283    
284    kebar = kb * temperature * (double)info->ndfRaw /
285      ( 2.0 * (double)info->ndf );
286    
287 <  for(vr = 0; vr < n_atoms; vr++){
287 >  for(vr = 0; vr < nobj; vr++){
288      
289      // uses equipartition theory to solve for vbar in angstrom/fs
290  
291 <    av2 = 2.0 * kebar / atoms[vr]->getMass();
291 >    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
292      vbar = sqrt( av2 );
293  
294      // picks random velocities from a gaussian distribution
# Line 283 | Line 297 | void Thermo::velocitize() {
297      for (j=0; j<3; j++)
298        aVel[j] = vbar * gaussStream->getGaussian();
299      
300 <    atoms[vr]->setVel( aVel );
300 >    info->integrableObjects[vr]->setVel( aVel );
301 >    
302 >    if(info->integrableObjects[vr]->isDirectional()){
303 >
304 >      info->integrableObjects[vr]->getI( I );
305 >
306 >      if (info->integrableObjects[vr]->isLinear()) {
307 >
308 >        l= info->integrableObjects[vr]->linearAxis();
309 >        m = (l+1)%3;
310 >        n = (l+2)%3;
311 >
312 >        aJ[l] = 0.0;
313 >        vbar = sqrt( 2.0 * kebar * I[m][m] );
314 >        aJ[m] = vbar * gaussStream->getGaussian();
315 >        vbar = sqrt( 2.0 * kebar * I[n][n] );
316 >        aJ[n] = vbar * gaussStream->getGaussian();
317 >        
318 >      } else {
319 >        for (j = 0 ; j < 3; j++) {
320 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
321 >          aJ[j] = vbar * gaussStream->getGaussian();
322 >        }      
323 >      } // else isLinear
324 >
325 >      info->integrableObjects[vr]->setJ( aJ );
326 >      
327 >    }//isDirectional
328  
329    }
330  
# Line 294 | Line 335 | void Thermo::velocitize() {
335    //  Corrects for the center of mass drift.
336    // sums all the momentum and divides by total mass.
337  
338 <  for(vd = 0; vd < n_atoms; vd++){
338 >  for(vd = 0; vd < nobj; vd++){
339      
340 <    atoms[vd]->getVel(aVel);
340 >    info->integrableObjects[vd]->getVel(aVel);
341      
342      for (j=0; j < 3; j++)
343        aVel[j] -= vdrift[j];
344          
345 <    atoms[vd]->setVel( aVel );
345 >    info->integrableObjects[vd]->setVel( aVel );
346    }
306  if( n_oriented ){
307  
308    for( i=0; i<n_atoms; i++ ){
309      
310      if( atoms[i]->isDirectional() ){
311        
312        dAtom = (DirectionalAtom *)atoms[i];
313        dAtom->getI( I );
314        
315        for (j = 0 ; j < 3; j++) {
347  
317          vbar = sqrt( 2.0 * kebar * I[j][j] );
318          aJ[j] = vbar * gaussStream->getGaussian();
319
320        }      
321
322        dAtom->setJ( aJ );
323
324      }
325    }  
326  }
348   }
349  
350   void Thermo::getCOMVel(double vdrift[3]){
# Line 331 | Line 352 | void Thermo::getCOMVel(double vdrift[3]){
352    double mtot, mtot_local;
353    double aVel[3], amass;
354    double vdrift_local[3];
355 <  int vd, n_atoms, j;
356 <  Atom** atoms;
355 >  int vd, j;
356 >  int nobj;
357  
358 <  // We are very careless here with the distinction between n_atoms and n_local
338 <  // We should really fix this before someone pokes an eye out.
358 >  nobj   = info->integrableObjects.size();
359  
340  n_atoms = info->n_atoms;  
341  atoms   = info->atoms;
342
360    mtot_local = 0.0;
361    vdrift_local[0] = 0.0;
362    vdrift_local[1] = 0.0;
363    vdrift_local[2] = 0.0;
364    
365 <  for(vd = 0; vd < n_atoms; vd++){
365 >  for(vd = 0; vd < nobj; vd++){
366      
367 <    amass = atoms[vd]->getMass();
368 <    atoms[vd]->getVel( aVel );
367 >    amass = info->integrableObjects[vd]->getMass();
368 >    info->integrableObjects[vd]->getVel( aVel );
369  
370      for(j = 0; j < 3; j++)
371        vdrift_local[j] += aVel[j] * amass;
# Line 377 | Line 394 | void Thermo::getCOM(double COM[3]){
394    double mtot, mtot_local;
395    double aPos[3], amass;
396    double COM_local[3];
397 <  int i, n_atoms, j;
398 <  Atom** atoms;
397 >  int i, j;
398 >  int nobj;
399  
383  // We are very careless here with the distinction between n_atoms and n_local
384  // We should really fix this before someone pokes an eye out.
385
386  n_atoms = info->n_atoms;  
387  atoms   = info->atoms;
388
400    mtot_local = 0.0;
401    COM_local[0] = 0.0;
402    COM_local[1] = 0.0;
403    COM_local[2] = 0.0;
404 <  
405 <  for(i = 0; i < n_atoms; i++){
404 >
405 >  nobj = info->integrableObjects.size();
406 >  for(i = 0; i < nobj; i++){
407      
408 <    amass = atoms[i]->getMass();
409 <    atoms[i]->getPos( aPos );
408 >    amass = info->integrableObjects[i]->getMass();
409 >    info->integrableObjects[i]->getPos( aPos );
410  
411      for(j = 0; j < 3; j++)
412        COM_local[j] += aPos[j] * amass;
# Line 416 | Line 428 | void Thermo::getCOM(double COM[3]){
428      COM[i] = COM[i] / mtot;
429    }
430   }
431 +
432 + void Thermo::removeCOMdrift() {
433 +  double vdrift[3], aVel[3];
434 +  int vd, j, nobj;
435 +
436 +  nobj = info->integrableObjects.size();
437 +
438 +  // Get the Center of Mass drift velocity.
439 +
440 +  getCOMVel(vdrift);
441 +  
442 +  //  Corrects for the center of mass drift.
443 +  // sums all the momentum and divides by total mass.
444 +
445 +  for(vd = 0; vd < nobj; vd++){
446 +    
447 +    info->integrableObjects[vd]->getVel(aVel);
448 +    
449 +    for (j=0; j < 3; j++)
450 +      aVel[j] -= vdrift[j];
451 +        
452 +    info->integrableObjects[vd]->setVel( aVel );
453 +  }
454 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines