--- trunk/OOPSE/libmdtools/Thermo.cpp 2003/03/25 22:54:16 401 +++ trunk/OOPSE/libmdtools/Thermo.cpp 2004/04/22 21:33:55 1131 @@ -1,23 +1,25 @@ -#include +#include #include using namespace std; #ifdef IS_MPI #include -#include #endif //is_mpi #include "Thermo.hpp" #include "SRI.hpp" #include "Integrator.hpp" +#include "simError.h" +#include "MatVec3.h" + +#ifdef IS_MPI #define __C -//#include "mpiSimulation.hpp" +#include "mpiSimulation.hpp" +#endif // is_mpi -#define BASE_SEED 123456789 - -Thermo::Thermo( SimInfo* the_entry_plug ) { - entry_plug = the_entry_plug; - int baseSeed = BASE_SEED; +Thermo::Thermo( SimInfo* the_info ) { + info = the_info; + int baseSeed = the_info->getSeed(); gaussStream = new gaussianSPRNG( baseSeed ); } \ No newline at end of file @@ -29,49 +31,46 @@ double Thermo::getKinetic(){ double Thermo::getKinetic(){ const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 - double vx2, vy2, vz2; - double kinetic, v_sqr; - int kl; - double jx2, jy2, jz2; // the square of the angular momentums + double kinetic; + double amass; + double aVel[3], aJ[3], I[3][3]; + int i, j, k, kl; - DirectionalAtom *dAtom; - - int n_atoms; double kinetic_global; - Atom** atoms; - + vector integrableObjects = info->integrableObjects; - n_atoms = entry_plug->n_atoms; - atoms = entry_plug->atoms; - kinetic = 0.0; kinetic_global = 0.0; - for( kl=0; kl < n_atoms; kl++ ){ - vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); - vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); - vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); + for (kl=0; klgetVel(aVel); + amass = integrableObjects[kl]->getMass(); - v_sqr = vx2 + vy2 + vz2; - kinetic += atoms[kl]->getMass() * v_sqr; + for(j=0; j<3; j++) + kinetic += amass*aVel[j]*aVel[j]; - if( atoms[kl]->isDirectional() ){ - - dAtom = (DirectionalAtom *)atoms[kl]; - - jx2 = dAtom->getJx() * dAtom->getJx(); - jy2 = dAtom->getJy() * dAtom->getJy(); - jz2 = dAtom->getJz() * dAtom->getJz(); - - kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) - + (jz2 / dAtom->getIzz()); - } + if (integrableObjects[kl]->isDirectional()){ + + integrableObjects[kl]->getJ( aJ ); + integrableObjects[kl]->getI( I ); + + if (integrableObjects[kl]->isLinear()) { + i = integrableObjects[kl]->linearAxis(); + j = (i+1)%3; + k = (i+2)%3; + kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; + } else { + for (j=0; j<3; j++) + kinetic += aJ[j]*aJ[j] / I[j][j]; + } + } } #ifdef IS_MPI - MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); + MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, + MPI_SUM, MPI_COMM_WORLD); kinetic = kinetic_global; #endif //is_mpi - + kinetic = kinetic * 0.5 / e_convert; return kinetic; \ No newline at end of file @@ -82,21 +81,23 @@ double Thermo::getPotential(){ double potential_local; double potential; int el, nSRI; - SRI** sris; + Molecule* molecules; - sris = entry_plug->sr_interactions; - nSRI = entry_plug->n_SRI; + molecules = info->molecules; + nSRI = info->n_SRI; potential_local = 0.0; - potential_local += entry_plug->lrPot; + potential = 0.0; + potential_local += info->lrPot; - for( el=0; elget_potential(); + for( el=0; eln_mol; el++ ){ + potential_local += molecules[el].getPotential(); } // Get total potential for entire system from MPI. #ifdef IS_MPI - MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); + MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, + MPI_SUM, MPI_COMM_WORLD); #else potential = potential_local; #endif // is_mpi \ No newline at end of file @@ -114,164 +115,263 @@ double Thermo::getTemperature(){ double Thermo::getTemperature(){ - const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) + const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) double temperature; - int ndf_local, ndf; + + temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); + return temperature; +} + +double Thermo::getVolume() { + + return info->boxVol; +} + +double Thermo::getPressure() { + + // Relies on the calculation of the full molecular pressure tensor - ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented - - entry_plug->n_constraints; + const double p_convert = 1.63882576e8; + double press[3][3]; + double pressure; -#ifdef IS_MPI - MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); -#else - ndf = ndf_local; -#endif + this->getPressureTensor(press); - ndf = ndf - 3; + pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; + + return pressure; +} + +double Thermo::getPressureX() { + + // Relies on the calculation of the full molecular pressure tensor - temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); - return temperature; + const double p_convert = 1.63882576e8; + double press[3][3]; + double pressureX; + + this->getPressureTensor(press); + + pressureX = p_convert * press[0][0]; + + return pressureX; } -double Thermo::getPressure(){ +double Thermo::getPressureY() { -// const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm -// const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa -// const double conv_A_m = 1.0E-10; //convert A -> m + // Relies on the calculation of the full molecular pressure tensor + + const double p_convert = 1.63882576e8; + double press[3][3]; + double pressureY; - return 0.0; + this->getPressureTensor(press); + + pressureY = p_convert * press[1][1]; + + return pressureY; +} + +double Thermo::getPressureZ() { + + // Relies on the calculation of the full molecular pressure tensor + + const double p_convert = 1.63882576e8; + double press[3][3]; + double pressureZ; + + this->getPressureTensor(press); + + pressureZ = p_convert * press[2][2]; + + return pressureZ; +} + + +void Thermo::getPressureTensor(double press[3][3]){ + // returns pressure tensor in units amu*fs^-2*Ang^-1 + // routine derived via viral theorem description in: + // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 + + const double e_convert = 4.184e-4; + + double molmass, volume; + double vcom[3], pcom[3], fcom[3], scaled[3]; + double p_local[9], p_global[9]; + int i, j, k, nMols; + Molecule* molecules; + + nMols = info->n_mol; + molecules = info->molecules; + //tau = info->tau; + + // use velocities of molecular centers of mass and molecular masses: + for (i=0; i < 9; i++) { + p_local[i] = 0.0; + p_global[i] = 0.0; + } + + for (i=0; i < info->integrableObjects.size(); i++) { + + molmass = info->integrableObjects[i]->getMass(); + + info->integrableObjects[i]->getVel(vcom); + info->integrableObjects[i]->getPos(pcom); + info->integrableObjects[i]->getFrc(fcom); + + matVecMul3(info->HmatInv, pcom, scaled); + + for(j=0; j<3; j++) + scaled[j] -= roundMe(scaled[j]); + + // calc the wrapped real coordinates from the wrapped scaled coordinates + + matVecMul3(info->Hmat, scaled, pcom); + + p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert; + p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert; + p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert; + p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert; + p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert; + p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert; + p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert; + p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert; + p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert; + + } + + // Get total for entire system from MPI. + +#ifdef IS_MPI + MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); +#else + for (i=0; i<9; i++) { + p_global[i] = p_local[i]; + } +#endif // is_mpi + + volume = this->getVolume(); + + for(i = 0; i < 3; i++) { + for (j = 0; j < 3; j++) { + k = 3*i + j; + press[i][j] = p_global[k] / volume; + + } + } } void Thermo::velocitize() { - double x,y; - double vx, vy, vz; - double jx, jy, jz; - int i, vr, vd; // velocity randomizer loop counters - double *vdrift; + double aVel[3], aJ[3], I[3][3]; + int i, j, l, m, n, vr, vd; // velocity randomizer loop counters + double vdrift[3]; double vbar; const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. double av2; double kebar; - int ndf; // number of degrees of freedom - int ndfRaw; // the raw number of degrees of freedom - int n_atoms; - Atom** atoms; - DirectionalAtom* dAtom; double temperature; - int n_oriented; - int n_constraints; + int nobj; - atoms = entry_plug->atoms; - n_atoms = entry_plug->n_atoms; - temperature = entry_plug->target_temp; - n_oriented = entry_plug->n_oriented; - n_constraints = entry_plug->n_constraints; + nobj = info->integrableObjects.size(); - - ndfRaw = 3 * n_atoms + 3 * n_oriented; - ndf = ndfRaw - n_constraints - 3; - kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); + temperature = info->target_temp; - for(vr = 0; vr < n_atoms; vr++){ + kebar = kb * temperature * (double)info->ndfRaw / + ( 2.0 * (double)info->ndf ); + + for(vr = 0; vr < nobj; vr++){ // uses equipartition theory to solve for vbar in angstrom/fs - av2 = 2.0 * kebar / atoms[vr]->getMass(); + av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); vbar = sqrt( av2 ); -// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); - // picks random velocities from a gaussian distribution // centered on vbar - vx = vbar * gaussStream->getGaussian(); - vy = vbar * gaussStream->getGaussian(); - vz = vbar * gaussStream->getGaussian(); + for (j=0; j<3; j++) + aVel[j] = vbar * gaussStream->getGaussian(); + + info->integrableObjects[vr]->setVel( aVel ); + + if(info->integrableObjects[vr]->isDirectional()){ - atoms[vr]->set_vx( vx ); - atoms[vr]->set_vy( vy ); - atoms[vr]->set_vz( vz ); + info->integrableObjects[vr]->getI( I ); + + if (info->integrableObjects[vr]->isLinear()) { + + l= info->integrableObjects[vr]->linearAxis(); + m = (l+1)%3; + n = (l+2)%3; + + aJ[l] = 0.0; + vbar = sqrt( 2.0 * kebar * I[m][m] ); + aJ[m] = vbar * gaussStream->getGaussian(); + vbar = sqrt( 2.0 * kebar * I[n][n] ); + aJ[n] = vbar * gaussStream->getGaussian(); + + } else { + for (j = 0 ; j < 3; j++) { + vbar = sqrt( 2.0 * kebar * I[j][j] ); + aJ[j] = vbar * gaussStream->getGaussian(); + } + } // else isLinear + + info->integrableObjects[vr]->setJ( aJ ); + + }//isDirectional + } // Get the Center of Mass drift velocity. - vdrift = getCOMVel(); + getCOMVel(vdrift); // Corrects for the center of mass drift. // sums all the momentum and divides by total mass. - for(vd = 0; vd < n_atoms; vd++){ + for(vd = 0; vd < nobj; vd++){ - vx = atoms[vd]->get_vx(); - vy = atoms[vd]->get_vy(); - vz = atoms[vd]->get_vz(); - - vx -= vdrift[0]; - vy -= vdrift[1]; - vz -= vdrift[2]; + info->integrableObjects[vd]->getVel(aVel); - atoms[vd]->set_vx(vx); - atoms[vd]->set_vy(vy); - atoms[vd]->set_vz(vz); + for (j=0; j < 3; j++) + aVel[j] -= vdrift[j]; + + info->integrableObjects[vd]->setVel( aVel ); } - if( n_oriented ){ - - for( i=0; iisDirectional() ){ - - dAtom = (DirectionalAtom *)atoms[i]; - vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); - jx = vbar * gaussStream->getGaussian(); - - vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); - jy = vbar * gaussStream->getGaussian(); - - vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); - jz = vbar * gaussStream->getGaussian(); - - dAtom->setJx( jx ); - dAtom->setJy( jy ); - dAtom->setJz( jz ); - } - } - } } -double* Thermo::getCOMVel(){ +void Thermo::getCOMVel(double vdrift[3]){ double mtot, mtot_local; - double* vdrift; + double aVel[3], amass; double vdrift_local[3]; - int vd, n_atoms; - Atom** atoms; + int vd, j; + int nobj; - vdrift = new double[3]; - // We are very careless here with the distinction between n_atoms and n_local - // We should really fix this before someone pokes an eye out. + nobj = info->integrableObjects.size(); - n_atoms = entry_plug->n_atoms; - atoms = entry_plug->atoms; - mtot_local = 0.0; vdrift_local[0] = 0.0; vdrift_local[1] = 0.0; vdrift_local[2] = 0.0; - for(vd = 0; vd < n_atoms; vd++){ + for(vd = 0; vd < nobj; vd++){ - vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); - vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); - vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); + amass = info->integrableObjects[vd]->getMass(); + info->integrableObjects[vd]->getVel( aVel ); + + for(j = 0; j < 3; j++) + vdrift_local[j] += aVel[j] * amass; - mtot_local += atoms[vd]->getMass(); + mtot_local += amass; } #ifdef IS_MPI - MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); - MPI::COMM_WORLD.Allreduce(&vdrift_local,&vdrift,3,MPI_DOUBLE,MPI_SUM); + MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); + MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); #else mtot = mtot_local; for(vd = 0; vd < 3; vd++) { \ No newline at end of file @@ -283,6 +383,68 @@ double* Thermo::getCOMVel(){ vdrift[vd] = vdrift[vd] / mtot; } - return vdrift; } +void Thermo::getCOM(double COM[3]){ + + double mtot, mtot_local; + double aPos[3], amass; + double COM_local[3]; + int i, j; + int nobj; + + mtot_local = 0.0; + COM_local[0] = 0.0; + COM_local[1] = 0.0; + COM_local[2] = 0.0; + + nobj = info->integrableObjects.size(); + for(i = 0; i < nobj; i++){ + + amass = info->integrableObjects[i]->getMass(); + info->integrableObjects[i]->getPos( aPos ); + + for(j = 0; j < 3; j++) + COM_local[j] += aPos[j] * amass; + + mtot_local += amass; + } + +#ifdef IS_MPI + MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); + MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); +#else + mtot = mtot_local; + for(i = 0; i < 3; i++) { + COM[i] = COM_local[i]; + } +#endif + + for (i = 0; i < 3; i++) { + COM[i] = COM[i] / mtot; + } +} + +void Thermo::removeCOMdrift() { + double vdrift[3], aVel[3]; + int vd, j, nobj; + + nobj = info->integrableObjects.size(); + + // Get the Center of Mass drift velocity. + + getCOMVel(vdrift); + + // Corrects for the center of mass drift. + // sums all the momentum and divides by total mass. + + for(vd = 0; vd < nobj; vd++){ + + info->integrableObjects[vd]->getVel(aVel); + + for (j=0; j < 3; j++) + aVel[j] -= vdrift[j]; + + info->integrableObjects[vd]->setVel( aVel ); + } +} \ No newline at end of file