ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 378 by mmeineke, Fri Mar 21 17:42:12 2003 UTC vs.
Revision 588 by gezelter, Thu Jul 10 17:10:56 2003 UTC

# Line 4 | Line 4 | using namespace std;
4  
5   #ifdef IS_MPI
6   #include <mpi.h>
7 #include <mpi++.h>
7   #endif //is_mpi
8  
9   #include "Thermo.hpp"
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12 + #include "simError.h"
13  
14 + #ifdef IS_MPI
15 + #define __C
16 + #include "mpiSimulation.hpp"
17 + #endif // is_mpi
18 +
19 +
20   #define BASE_SEED 123456789
21  
22   Thermo::Thermo( SimInfo* the_entry_plug ) {
# Line 66 | Line 72 | double Thermo::getKinetic(){
72      }
73    }
74   #ifdef IS_MPI
75 <  MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
75 >  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
76 >                MPI_SUM, MPI_COMM_WORLD);
77    kinetic = kinetic_global;
78   #endif //is_mpi
79  
# Line 77 | Line 84 | double Thermo::getPotential(){
84  
85   double Thermo::getPotential(){
86    
87 +  double potential_local;
88    double potential;
81  double potential_global;
89    int el, nSRI;
90 <  SRI** sris;
90 >  Molecule* molecules;
91  
92 <  sris = entry_plug->sr_interactions;
92 >  molecules = entry_plug->molecules;
93    nSRI = entry_plug->n_SRI;
94  
95 +  potential_local = 0.0;
96    potential = 0.0;
97 <  potential_global = 0.0;
90 <  potential += entry_plug->lrPot;
97 >  potential_local += entry_plug->lrPot;
98  
99 <  for( el=0; el<nSRI; el++ ){
100 <    
94 <    potential += sris[el]->get_potential();
99 >  for( el=0; el<entry_plug->n_mol; el++ ){    
100 >    potential_local += molecules[el].getPotential();
101    }
102  
103    // Get total potential for entire system from MPI.
104   #ifdef IS_MPI
105 <  MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
106 <  potential = potential_global;
107 <
105 >  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
106 >                MPI_SUM, MPI_COMM_WORLD);
107 > #else
108 >  potential = potential_local;
109   #endif // is_mpi
110  
111 + #ifdef IS_MPI
112 +  /*
113 +  std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
114 +  */
115 + #endif
116 +
117    return potential;
118   }
119  
# Line 117 | Line 130 | double Thermo::getTemperature(){
130    const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
131    double temperature;
132    
133 <  int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
121 <    - entry_plug->n_constraints - 3;
122 <
123 <  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
133 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
134    return temperature;
135   }
136  
137 < double Thermo::getPressure(){
137 > double Thermo::getEnthalpy() {
138  
139 < //  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
140 < // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
141 < //  const double conv_A_m = 1.0E-10; //convert A -> m
139 >  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
140 >  double u, p, v;
141 >  double press[3][3];
142  
143 <  return 0.0;
143 >  u = this->getTotalE();
144 >
145 >  this->getPressureTensor(press);
146 >  p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
147 >
148 >  v = this->getVolume();
149 >
150 >  return (u + (p*v)/e_convert);
151   }
152  
153 + double Thermo::getVolume() {
154 +
155 +  return entry_plug->boxVol;
156 + }
157 +
158 + double Thermo::getPressure() {
159 +
160 +  // Relies on the calculation of the full molecular pressure tensor
161 +  
162 +  const double p_convert = 1.63882576e8;
163 +  double press[3][3];
164 +  double pressure;
165 +
166 +  this->getPressureTensor(press);
167 +
168 +  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
169 +
170 +  return pressure;
171 + }
172 +
173 +
174 + void Thermo::getPressureTensor(double press[3][3]){
175 +  // returns pressure tensor in units amu*fs^-2*Ang^-1
176 +  // routine derived via viral theorem description in:
177 +  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
178 +
179 +  const double e_convert = 4.184e-4;
180 +
181 +  double molmass, volume;
182 +  double vcom[3];
183 +  double p_local[9], p_global[9];
184 +  int i, j, k, nMols;
185 +  Molecule* molecules;
186 +
187 +  nMols = entry_plug->n_mol;
188 +  molecules = entry_plug->molecules;
189 +  //tau = entry_plug->tau;
190 +
191 +  // use velocities of molecular centers of mass and molecular masses:
192 +  for (i=0; i < 9; i++) {    
193 +    p_local[i] = 0.0;
194 +    p_global[i] = 0.0;
195 +  }
196 +
197 +  for (i=0; i < nMols; i++) {
198 +    molmass = molecules[i].getCOMvel(vcom);
199 +
200 +    p_local[0] += molmass * (vcom[0] * vcom[0]);
201 +    p_local[1] += molmass * (vcom[0] * vcom[1]);
202 +    p_local[2] += molmass * (vcom[0] * vcom[2]);
203 +    p_local[3] += molmass * (vcom[1] * vcom[0]);
204 +    p_local[4] += molmass * (vcom[1] * vcom[1]);
205 +    p_local[5] += molmass * (vcom[1] * vcom[2]);
206 +    p_local[6] += molmass * (vcom[2] * vcom[0]);
207 +    p_local[7] += molmass * (vcom[2] * vcom[1]);
208 +    p_local[8] += molmass * (vcom[2] * vcom[2]);
209 +  }
210 +
211 +  // Get total for entire system from MPI.
212 +
213 + #ifdef IS_MPI
214 +  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
215 + #else
216 +  for (i=0; i<9; i++) {
217 +    p_global[i] = p_local[i];
218 +  }
219 + #endif // is_mpi
220 +
221 +  volume = entry_plug->boxVol;
222 +
223 +  for(i = 0; i < 3; i++) {
224 +    for (j = 0; j < 3; j++) {
225 +      k = 3*i + j;
226 +      press[i][j] = (p_global[k] - entry_plug->tau[k]*e_convert) / volume;
227 +    }
228 +  }
229 + }
230 +
231   void Thermo::velocitize() {
232    
233    double x,y;
# Line 140 | Line 235 | void Thermo::velocitize() {
235    double jx, jy, jz;
236    int i, vr, vd; // velocity randomizer loop counters
237    double vdrift[3];
143  double mtot = 0.0;
238    double vbar;
239    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
240    double av2;
241    double kebar;
148  int ndf; // number of degrees of freedom
149  int ndfRaw; // the raw number of degrees of freedom
242    int n_atoms;
243    Atom** atoms;
244    DirectionalAtom* dAtom;
# Line 160 | Line 252 | void Thermo::velocitize() {
252    n_oriented    = entry_plug->n_oriented;
253    n_constraints = entry_plug->n_constraints;
254    
255 <
256 <  ndfRaw = 3 * n_atoms + 3 * n_oriented;
165 <  ndf = ndfRaw - n_constraints - 3;
166 <  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
255 >  kebar = kb * temperature * (double)entry_plug->ndf /
256 >    ( 2.0 * (double)entry_plug->ndfRaw );
257    
258    for(vr = 0; vr < n_atoms; vr++){
259      
# Line 171 | Line 261 | void Thermo::velocitize() {
261  
262      av2 = 2.0 * kebar / atoms[vr]->getMass();
263      vbar = sqrt( av2 );
264 <
264 >
265   //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
266      
267      // picks random velocities from a gaussian distribution
# Line 185 | Line 275 | void Thermo::velocitize() {
275      atoms[vr]->set_vy( vy );
276      atoms[vr]->set_vz( vz );
277    }
278 +
279 +  // Get the Center of Mass drift velocity.
280 +
281 +  getCOMVel(vdrift);
282    
283    //  Corrects for the center of mass drift.
284    // sums all the momentum and divides by total mass.
191  
192  mtot = 0.0;
193  vdrift[0] = 0.0;
194  vdrift[1] = 0.0;
195  vdrift[2] = 0.0;
196  for(vd = 0; vd < n_atoms; vd++){
197    
198    vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
199    vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
200    vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
201    
202    mtot += atoms[vd]->getMass();
203  }
204  
205  for (vd = 0; vd < 3; vd++) {
206    vdrift[vd] = vdrift[vd] / mtot;
207  }
208  
285  
286    for(vd = 0; vd < n_atoms; vd++){
287      
288      vx = atoms[vd]->get_vx();
289      vy = atoms[vd]->get_vy();
290      vz = atoms[vd]->get_vz();
291 <    
216 <    
291 >        
292      vx -= vdrift[0];
293      vy -= vdrift[1];
294      vz -= vdrift[2];
# Line 235 | Line 310 | void Thermo::velocitize() {
310  
311          vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
312          jy = vbar * gaussStream->getGaussian();
313 <
313 >        
314          vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
315          jz = vbar * gaussStream->getGaussian();
316          
# Line 246 | Line 321 | void Thermo::velocitize() {
321      }  
322    }
323   }
324 +
325 + void Thermo::getCOMVel(double vdrift[3]){
326 +
327 +  double mtot, mtot_local;
328 +  double vdrift_local[3];
329 +  int vd, n_atoms;
330 +  Atom** atoms;
331 +
332 +  // We are very careless here with the distinction between n_atoms and n_local
333 +  // We should really fix this before someone pokes an eye out.
334 +
335 +  n_atoms = entry_plug->n_atoms;  
336 +  atoms   = entry_plug->atoms;
337 +
338 +  mtot_local = 0.0;
339 +  vdrift_local[0] = 0.0;
340 +  vdrift_local[1] = 0.0;
341 +  vdrift_local[2] = 0.0;
342 +  
343 +  for(vd = 0; vd < n_atoms; vd++){
344 +    
345 +    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
346 +    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
347 +    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
348 +    
349 +    mtot_local += atoms[vd]->getMass();
350 +  }
351 +
352 + #ifdef IS_MPI
353 +  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
354 +  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
355 + #else
356 +  mtot = mtot_local;
357 +  for(vd = 0; vd < 3; vd++) {
358 +    vdrift[vd] = vdrift_local[vd];
359 +  }
360 + #endif
361 +    
362 +  for (vd = 0; vd < 3; vd++) {
363 +    vdrift[vd] = vdrift[vd] / mtot;
364 +  }
365 +  
366 + }
367 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines