ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 401 by chuckv, Tue Mar 25 22:54:16 2003 UTC vs.
Revision 1192 by gezelter, Mon May 24 21:03:30 2004 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2   #include <iostream>
3   using namespace std;
4  
5   #ifdef IS_MPI
6   #include <mpi.h>
7 #include <mpi++.h>
7   #endif //is_mpi
8  
9   #include "Thermo.hpp"
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12 + #include "simError.h"
13 + #include "MatVec3.h"
14 +
15 + #ifdef IS_MPI
16   #define __C
17 < //#include "mpiSimulation.hpp"
17 > #include "mpiSimulation.hpp"
18 > #endif // is_mpi
19  
20 < #define BASE_SEED 123456789
20 > inline double roundMe( double x ){
21 >          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 > }
23  
24 < Thermo::Thermo( SimInfo* the_entry_plug ) {
25 <  entry_plug = the_entry_plug;
26 <  int baseSeed = BASE_SEED;
24 > Thermo::Thermo( SimInfo* the_info ) {
25 >  info = the_info;
26 >  int baseSeed = the_info->getSeed();
27    
28    gaussStream = new gaussianSPRNG( baseSeed );
29   }
# Line 29 | Line 35 | double Thermo::getKinetic(){
35   double Thermo::getKinetic(){
36  
37    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double vx2, vy2, vz2;
39 <  double kinetic, v_sqr;
40 <  int kl;
41 <  double jx2, jy2, jz2; // the square of the angular momentums
38 >  double kinetic;
39 >  double amass;
40 >  double aVel[3], aJ[3], I[3][3];
41 >  int i, j, k, kl;
42  
37  DirectionalAtom *dAtom;
38
39  int n_atoms;
43    double kinetic_global;
44 <  Atom** atoms;
42 <
44 >  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45    
44  n_atoms = entry_plug->n_atoms;
45  atoms = entry_plug->atoms;
46
46    kinetic = 0.0;
47    kinetic_global = 0.0;
49  for( kl=0; kl < n_atoms; kl++ ){
48  
49 <    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
50 <    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
51 <    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
49 >  for (kl=0; kl<integrableObjects.size(); kl++) {
50 >    integrableObjects[kl]->getVel(aVel);
51 >    amass = integrableObjects[kl]->getMass();
52  
53 <    v_sqr = vx2 + vy2 + vz2;
54 <    kinetic += atoms[kl]->getMass() * v_sqr;
53 >   for(j=0; j<3; j++)
54 >      kinetic += amass*aVel[j]*aVel[j];
55  
56 <    if( atoms[kl]->isDirectional() ){
57 <            
58 <      dAtom = (DirectionalAtom *)atoms[kl];
59 <      
60 <      jx2 = dAtom->getJx() * dAtom->getJx();    
61 <      jy2 = dAtom->getJy() * dAtom->getJy();
62 <      jz2 = dAtom->getJz() * dAtom->getJz();
63 <      
64 <      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
65 <        + (jz2 / dAtom->getIzz());
66 <    }
56 >   if (integrableObjects[kl]->isDirectional()){
57 >
58 >      integrableObjects[kl]->getJ( aJ );
59 >      integrableObjects[kl]->getI( I );
60 >
61 >      if (integrableObjects[kl]->isLinear()) {
62 >        i = integrableObjects[kl]->linearAxis();
63 >        j = (i+1)%3;
64 >        k = (i+2)%3;
65 >        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 >      } else {
67 >        for (j=0; j<3; j++)
68 >          kinetic += aJ[j]*aJ[j] / I[j][j];
69 >      }
70 >   }
71    }
72   #ifdef IS_MPI
73 <  MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
73 >  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74 >                MPI_SUM, MPI_COMM_WORLD);
75    kinetic = kinetic_global;
76   #endif //is_mpi
77 <
77 >  
78    kinetic = kinetic * 0.5 / e_convert;
79  
80    return kinetic;
# Line 82 | Line 85 | double Thermo::getPotential(){
85    double potential_local;
86    double potential;
87    int el, nSRI;
88 <  SRI** sris;
88 >  Molecule* molecules;
89  
90 <  sris = entry_plug->sr_interactions;
91 <  nSRI = entry_plug->n_SRI;
90 >  molecules = info->molecules;
91 >  nSRI = info->n_SRI;
92  
93    potential_local = 0.0;
94 <  potential_local += entry_plug->lrPot;
94 >  potential = 0.0;
95 >  potential_local += info->lrPot;
96  
97 <  for( el=0; el<nSRI; el++ ){    
98 <    potential_local += sris[el]->get_potential();
97 >  for( el=0; el<info->n_mol; el++ ){    
98 >    potential_local += molecules[el].getPotential();
99    }
100  
101    // Get total potential for entire system from MPI.
102   #ifdef IS_MPI
103 <  MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM);
103 >  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 >                MPI_SUM, MPI_COMM_WORLD);
105   #else
106    potential = potential_local;
107   #endif // is_mpi
# Line 114 | Line 119 | double Thermo::getTemperature(){
119  
120   double Thermo::getTemperature(){
121  
122 <  const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
122 >  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123    double temperature;
124 <  int ndf_local, ndf;
124 >
125 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 >  return temperature;
127 > }
128 >
129 > double Thermo::getVolume() {
130 >
131 >  return info->boxVol;
132 > }
133 >
134 > double Thermo::getPressure() {
135 >
136 >  // Relies on the calculation of the full molecular pressure tensor
137    
138 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
139 <    - entry_plug->n_constraints;
138 >  const double p_convert = 1.63882576e8;
139 >  double press[3][3];
140 >  double pressure;
141  
142 < #ifdef IS_MPI
125 <  MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
126 < #else
127 <  ndf = ndf_local;
128 < #endif
142 >  this->getPressureTensor(press);
143  
144 <  ndf = ndf - 3;
144 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
145 >
146 >  return pressure;
147 > }
148 >
149 > double Thermo::getPressureX() {
150 >
151 >  // Relies on the calculation of the full molecular pressure tensor
152    
153 <  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
154 <  return temperature;
153 >  const double p_convert = 1.63882576e8;
154 >  double press[3][3];
155 >  double pressureX;
156 >
157 >  this->getPressureTensor(press);
158 >
159 >  pressureX = p_convert * press[0][0];
160 >
161 >  return pressureX;
162   }
163  
164 < double Thermo::getPressure(){
164 > double Thermo::getPressureY() {
165  
166 < //  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
167 < // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
168 < //  const double conv_A_m = 1.0E-10; //convert A -> m
166 >  // Relies on the calculation of the full molecular pressure tensor
167 >  
168 >  const double p_convert = 1.63882576e8;
169 >  double press[3][3];
170 >  double pressureY;
171  
172 <  return 0.0;
172 >  this->getPressureTensor(press);
173 >
174 >  pressureY = p_convert * press[1][1];
175 >
176 >  return pressureY;
177   }
178  
179 + double Thermo::getPressureZ() {
180 +
181 +  // Relies on the calculation of the full molecular pressure tensor
182 +  
183 +  const double p_convert = 1.63882576e8;
184 +  double press[3][3];
185 +  double pressureZ;
186 +
187 +  this->getPressureTensor(press);
188 +
189 +  pressureZ = p_convert * press[2][2];
190 +
191 +  return pressureZ;
192 + }
193 +
194 +
195 + void Thermo::getPressureTensor(double press[3][3]){
196 +  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 +  // routine derived via viral theorem description in:
198 +  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199 +
200 +  const double e_convert = 4.184e-4;
201 +
202 +  double molmass, volume;
203 +  double vcom[3], pcom[3], fcom[3], scaled[3];
204 +  double p_local[9], p_global[9];
205 +  int i, j, k, nMols;
206 +  Molecule* molecules;
207 +
208 +  nMols = info->n_mol;
209 +  molecules = info->molecules;
210 +  //tau = info->tau;
211 +
212 +  // use velocities of molecular centers of mass and molecular masses:
213 +  for (i=0; i < 9; i++) {    
214 +    p_local[i] = 0.0;
215 +    p_global[i] = 0.0;
216 +  }
217 +
218 +  for (i=0; i < info->integrableObjects.size(); i++) {
219 +
220 +    molmass = info->integrableObjects[i]->getMass();
221 +    
222 +    info->integrableObjects[i]->getVel(vcom);
223 +    info->integrableObjects[i]->getPos(pcom);
224 +    info->integrableObjects[i]->getFrc(fcom);
225 +
226 +    matVecMul3(info->HmatInv, pcom, scaled);
227 +  
228 +    for(j=0; j<3; j++)
229 +      scaled[j] -= roundMe(scaled[j]);
230 +
231 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
232 +  
233 +    matVecMul3(info->Hmat, scaled, pcom);
234 +    
235 +    p_local[0] += molmass * (vcom[0] * vcom[0]);
236 +    p_local[1] += molmass * (vcom[0] * vcom[1]);
237 +    p_local[2] += molmass * (vcom[0] * vcom[2]);
238 +    p_local[3] += molmass * (vcom[1] * vcom[0]);
239 +    p_local[4] += molmass * (vcom[1] * vcom[1]);
240 +    p_local[5] += molmass * (vcom[1] * vcom[2]);
241 +    p_local[6] += molmass * (vcom[2] * vcom[0]);
242 +    p_local[7] += molmass * (vcom[2] * vcom[1]);
243 +    p_local[8] += molmass * (vcom[2] * vcom[2]);
244 +    
245 +  }
246 +
247 +  // Get total for entire system from MPI.
248 +
249 + #ifdef IS_MPI
250 +  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
251 + #else
252 +  for (i=0; i<9; i++) {
253 +    p_global[i] = p_local[i];
254 +  }
255 + #endif // is_mpi
256 +
257 +  volume = this->getVolume();
258 +
259 +  for(i = 0; i < 3; i++) {
260 +    for (j = 0; j < 3; j++) {
261 +      k = 3*i + j;
262 +      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
263 +    }
264 +  }
265 + }
266 +
267   void Thermo::velocitize() {
268    
269 <  double x,y;
270 <  double vx, vy, vz;
271 <  double jx, jy, jz;
150 <  int i, vr, vd; // velocity randomizer loop counters
151 <  double *vdrift;
269 >  double aVel[3], aJ[3], I[3][3];
270 >  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
271 >  double vdrift[3];
272    double vbar;
273    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
274    double av2;
275    double kebar;
156  int ndf; // number of degrees of freedom
157  int ndfRaw; // the raw number of degrees of freedom
158  int n_atoms;
159  Atom** atoms;
160  DirectionalAtom* dAtom;
276    double temperature;
277 <  int n_oriented;
163 <  int n_constraints;
277 >  int nobj;
278  
279 <  atoms         = entry_plug->atoms;
166 <  n_atoms       = entry_plug->n_atoms;
167 <  temperature   = entry_plug->target_temp;
168 <  n_oriented    = entry_plug->n_oriented;
169 <  n_constraints = entry_plug->n_constraints;
279 >  nobj = info->integrableObjects.size();
280    
281 <
172 <  ndfRaw = 3 * n_atoms + 3 * n_oriented;
173 <  ndf = ndfRaw - n_constraints - 3;
174 <  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
281 >  temperature   = info->target_temp;
282    
283 <  for(vr = 0; vr < n_atoms; vr++){
283 >  kebar = kb * temperature * (double)info->ndfRaw /
284 >    ( 2.0 * (double)info->ndf );
285 >  
286 >  for(vr = 0; vr < nobj; vr++){
287      
288      // uses equipartition theory to solve for vbar in angstrom/fs
289  
290 <    av2 = 2.0 * kebar / atoms[vr]->getMass();
290 >    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
291      vbar = sqrt( av2 );
292  
183 //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
184    
293      // picks random velocities from a gaussian distribution
294      // centered on vbar
295  
296 <    vx = vbar * gaussStream->getGaussian();
297 <    vy = vbar * gaussStream->getGaussian();
298 <    vz = vbar * gaussStream->getGaussian();
296 >    for (j=0; j<3; j++)
297 >      aVel[j] = vbar * gaussStream->getGaussian();
298 >    
299 >    info->integrableObjects[vr]->setVel( aVel );
300 >    
301 >    if(info->integrableObjects[vr]->isDirectional()){
302  
303 <    atoms[vr]->set_vx( vx );
304 <    atoms[vr]->set_vy( vy );
305 <    atoms[vr]->set_vz( vz );
303 >      info->integrableObjects[vr]->getI( I );
304 >
305 >      if (info->integrableObjects[vr]->isLinear()) {
306 >
307 >        l= info->integrableObjects[vr]->linearAxis();
308 >        m = (l+1)%3;
309 >        n = (l+2)%3;
310 >
311 >        aJ[l] = 0.0;
312 >        vbar = sqrt( 2.0 * kebar * I[m][m] );
313 >        aJ[m] = vbar * gaussStream->getGaussian();
314 >        vbar = sqrt( 2.0 * kebar * I[n][n] );
315 >        aJ[n] = vbar * gaussStream->getGaussian();
316 >        
317 >      } else {
318 >        for (j = 0 ; j < 3; j++) {
319 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
320 >          aJ[j] = vbar * gaussStream->getGaussian();
321 >        }      
322 >      } // else isLinear
323 >
324 >      info->integrableObjects[vr]->setJ( aJ );
325 >      
326 >    }//isDirectional
327 >
328    }
329  
330    // Get the Center of Mass drift velocity.
331  
332 <  vdrift = getCOMVel();
332 >  getCOMVel(vdrift);
333    
334    //  Corrects for the center of mass drift.
335    // sums all the momentum and divides by total mass.
336  
337 <  for(vd = 0; vd < n_atoms; vd++){
337 >  for(vd = 0; vd < nobj; vd++){
338      
339 <    vx = atoms[vd]->get_vx();
207 <    vy = atoms[vd]->get_vy();
208 <    vz = atoms[vd]->get_vz();
209 <        
210 <    vx -= vdrift[0];
211 <    vy -= vdrift[1];
212 <    vz -= vdrift[2];
339 >    info->integrableObjects[vd]->getVel(aVel);
340      
341 <    atoms[vd]->set_vx(vx);
342 <    atoms[vd]->set_vy(vy);
343 <    atoms[vd]->set_vz(vz);
341 >    for (j=0; j < 3; j++)
342 >      aVel[j] -= vdrift[j];
343 >        
344 >    info->integrableObjects[vd]->setVel( aVel );
345    }
218  if( n_oriented ){
219  
220    for( i=0; i<n_atoms; i++ ){
221      
222      if( atoms[i]->isDirectional() ){
223        
224        dAtom = (DirectionalAtom *)atoms[i];
346  
226        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
227        jx = vbar * gaussStream->getGaussian();
228
229        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
230        jy = vbar * gaussStream->getGaussian();
231
232        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
233        jz = vbar * gaussStream->getGaussian();
234        
235        dAtom->setJx( jx );
236        dAtom->setJy( jy );
237        dAtom->setJz( jz );
238      }
239    }  
240  }
347   }
348  
349 < double* Thermo::getCOMVel(){
349 > void Thermo::getCOMVel(double vdrift[3]){
350  
351    double mtot, mtot_local;
352 <  double* vdrift;
352 >  double aVel[3], amass;
353    double vdrift_local[3];
354 <  int vd, n_atoms;
355 <  Atom** atoms;
354 >  int vd, j;
355 >  int nobj;
356  
357 <  vdrift = new double[3];
252 <  // We are very careless here with the distinction between n_atoms and n_local
253 <  // We should really fix this before someone pokes an eye out.
357 >  nobj   = info->integrableObjects.size();
358  
255  n_atoms = entry_plug->n_atoms;  
256  atoms   = entry_plug->atoms;
257
359    mtot_local = 0.0;
360    vdrift_local[0] = 0.0;
361    vdrift_local[1] = 0.0;
362    vdrift_local[2] = 0.0;
363    
364 <  for(vd = 0; vd < n_atoms; vd++){
364 >  for(vd = 0; vd < nobj; vd++){
365      
366 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
367 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
368 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
366 >    amass = info->integrableObjects[vd]->getMass();
367 >    info->integrableObjects[vd]->getVel( aVel );
368 >
369 >    for(j = 0; j < 3; j++)
370 >      vdrift_local[j] += aVel[j] * amass;
371      
372 <    mtot_local += atoms[vd]->getMass();
372 >    mtot_local += amass;
373    }
374  
375   #ifdef IS_MPI
376 <  MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM);
377 <  MPI::COMM_WORLD.Allreduce(&vdrift_local,&vdrift,3,MPI_DOUBLE,MPI_SUM);
376 >  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
377 >  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
378   #else
379    mtot = mtot_local;
380    for(vd = 0; vd < 3; vd++) {
# Line 283 | Line 386 | double* Thermo::getCOMVel(){
386      vdrift[vd] = vdrift[vd] / mtot;
387    }
388    
286  return vdrift;
389   }
390  
391 + void Thermo::getCOM(double COM[3]){
392 +
393 +  double mtot, mtot_local;
394 +  double aPos[3], amass;
395 +  double COM_local[3];
396 +  int i, j;
397 +  int nobj;
398 +
399 +  mtot_local = 0.0;
400 +  COM_local[0] = 0.0;
401 +  COM_local[1] = 0.0;
402 +  COM_local[2] = 0.0;
403 +
404 +  nobj = info->integrableObjects.size();
405 +  for(i = 0; i < nobj; i++){
406 +    
407 +    amass = info->integrableObjects[i]->getMass();
408 +    info->integrableObjects[i]->getPos( aPos );
409 +
410 +    for(j = 0; j < 3; j++)
411 +      COM_local[j] += aPos[j] * amass;
412 +    
413 +    mtot_local += amass;
414 +  }
415 +
416 + #ifdef IS_MPI
417 +  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
418 +  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
419 + #else
420 +  mtot = mtot_local;
421 +  for(i = 0; i < 3; i++) {
422 +    COM[i] = COM_local[i];
423 +  }
424 + #endif
425 +    
426 +  for (i = 0; i < 3; i++) {
427 +    COM[i] = COM[i] / mtot;
428 +  }
429 + }
430 +
431 + void Thermo::removeCOMdrift() {
432 +  double vdrift[3], aVel[3];
433 +  int vd, j, nobj;
434 +
435 +  nobj = info->integrableObjects.size();
436 +
437 +  // Get the Center of Mass drift velocity.
438 +
439 +  getCOMVel(vdrift);
440 +  
441 +  //  Corrects for the center of mass drift.
442 +  // sums all the momentum and divides by total mass.
443 +
444 +  for(vd = 0; vd < nobj; vd++){
445 +    
446 +    info->integrableObjects[vd]->getVel(aVel);
447 +    
448 +    for (j=0; j < 3; j++)
449 +      aVel[j] -= vdrift[j];
450 +        
451 +    info->integrableObjects[vd]->setVel( aVel );
452 +  }
453 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines