ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 403 by chuckv, Wed Mar 26 15:37:05 2003 UTC vs.
Revision 1131 by tim, Thu Apr 22 21:33:55 2004 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2   #include <iostream>
3   using namespace std;
4  
5   #ifdef IS_MPI
6   #include <mpi.h>
7 #include <mpi++.h>
7   #endif //is_mpi
8  
9   #include "Thermo.hpp"
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12 + #include "simError.h"
13 + #include "MatVec3.h"
14  
15   #ifdef IS_MPI
16   #define __C
17   #include "mpiSimulation.hpp"
18   #endif // is_mpi
19  
20 <
21 < #define BASE_SEED 123456789
22 <
22 < Thermo::Thermo( SimInfo* the_entry_plug ) {
23 <  entry_plug = the_entry_plug;
24 <  int baseSeed = BASE_SEED;
20 > Thermo::Thermo( SimInfo* the_info ) {
21 >  info = the_info;
22 >  int baseSeed = the_info->getSeed();
23    
24    gaussStream = new gaussianSPRNG( baseSeed );
25   }
# Line 33 | Line 31 | double Thermo::getKinetic(){
31   double Thermo::getKinetic(){
32  
33    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
34 <  double vx2, vy2, vz2;
35 <  double kinetic, v_sqr;
36 <  int kl;
37 <  double jx2, jy2, jz2; // the square of the angular momentums
34 >  double kinetic;
35 >  double amass;
36 >  double aVel[3], aJ[3], I[3][3];
37 >  int i, j, k, kl;
38  
41  DirectionalAtom *dAtom;
42
43  int n_atoms;
39    double kinetic_global;
40 <  Atom** atoms;
46 <
40 >  vector<StuntDouble *> integrableObjects = info->integrableObjects;
41    
48  n_atoms = entry_plug->n_atoms;
49  atoms = entry_plug->atoms;
50
42    kinetic = 0.0;
43    kinetic_global = 0.0;
53  for( kl=0; kl < n_atoms; kl++ ){
44  
45 <    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
46 <    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
47 <    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
45 >  for (kl=0; kl<integrableObjects.size(); kl++) {
46 >    integrableObjects[kl]->getVel(aVel);
47 >    amass = integrableObjects[kl]->getMass();
48  
49 <    v_sqr = vx2 + vy2 + vz2;
50 <    kinetic += atoms[kl]->getMass() * v_sqr;
49 >   for(j=0; j<3; j++)
50 >      kinetic += amass*aVel[j]*aVel[j];
51  
52 <    if( atoms[kl]->isDirectional() ){
53 <            
54 <      dAtom = (DirectionalAtom *)atoms[kl];
55 <      
56 <      jx2 = dAtom->getJx() * dAtom->getJx();    
57 <      jy2 = dAtom->getJy() * dAtom->getJy();
58 <      jz2 = dAtom->getJz() * dAtom->getJz();
59 <      
60 <      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
61 <        + (jz2 / dAtom->getIzz());
62 <    }
52 >   if (integrableObjects[kl]->isDirectional()){
53 >
54 >      integrableObjects[kl]->getJ( aJ );
55 >      integrableObjects[kl]->getI( I );
56 >
57 >      if (integrableObjects[kl]->isLinear()) {
58 >        i = integrableObjects[kl]->linearAxis();
59 >        j = (i+1)%3;
60 >        k = (i+2)%3;
61 >        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
62 >      } else {
63 >        for (j=0; j<3; j++)
64 >          kinetic += aJ[j]*aJ[j] / I[j][j];
65 >      }
66 >   }
67    }
68   #ifdef IS_MPI
69 <  MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
69 >  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
70 >                MPI_SUM, MPI_COMM_WORLD);
71    kinetic = kinetic_global;
72   #endif //is_mpi
73 <
73 >  
74    kinetic = kinetic * 0.5 / e_convert;
75  
76    return kinetic;
# Line 86 | Line 81 | double Thermo::getPotential(){
81    double potential_local;
82    double potential;
83    int el, nSRI;
84 <  SRI** sris;
84 >  Molecule* molecules;
85  
86 <  sris = entry_plug->sr_interactions;
87 <  nSRI = entry_plug->n_SRI;
86 >  molecules = info->molecules;
87 >  nSRI = info->n_SRI;
88  
89    potential_local = 0.0;
90 <  potential_local += entry_plug->lrPot;
90 >  potential = 0.0;
91 >  potential_local += info->lrPot;
92  
93 <  for( el=0; el<nSRI; el++ ){    
94 <    potential_local += sris[el]->get_potential();
93 >  for( el=0; el<info->n_mol; el++ ){    
94 >    potential_local += molecules[el].getPotential();
95    }
96  
97    // Get total potential for entire system from MPI.
98   #ifdef IS_MPI
99 <  MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM);
99 >  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
100 >                MPI_SUM, MPI_COMM_WORLD);
101   #else
102    potential = potential_local;
103   #endif // is_mpi
# Line 118 | Line 115 | double Thermo::getTemperature(){
115  
116   double Thermo::getTemperature(){
117  
118 <  const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
118 >  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
119    double temperature;
120 <  int ndf_local, ndf;
120 >
121 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
122 >  return temperature;
123 > }
124 >
125 > double Thermo::getVolume() {
126 >
127 >  return info->boxVol;
128 > }
129 >
130 > double Thermo::getPressure() {
131 >
132 >  // Relies on the calculation of the full molecular pressure tensor
133    
134 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
135 <    - entry_plug->n_constraints;
134 >  const double p_convert = 1.63882576e8;
135 >  double press[3][3];
136 >  double pressure;
137  
138 < #ifdef IS_MPI
129 <  MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
130 < #else
131 <  ndf = ndf_local;
132 < #endif
138 >  this->getPressureTensor(press);
139  
140 <  ndf = ndf - 3;
140 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
141 >
142 >  return pressure;
143 > }
144 >
145 > double Thermo::getPressureX() {
146 >
147 >  // Relies on the calculation of the full molecular pressure tensor
148    
149 <  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
150 <  return temperature;
149 >  const double p_convert = 1.63882576e8;
150 >  double press[3][3];
151 >  double pressureX;
152 >
153 >  this->getPressureTensor(press);
154 >
155 >  pressureX = p_convert * press[0][0];
156 >
157 >  return pressureX;
158   }
159  
160 < double Thermo::getPressure(){
160 > double Thermo::getPressureY() {
161  
162 < //  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
163 < // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
164 < //  const double conv_A_m = 1.0E-10; //convert A -> m
162 >  // Relies on the calculation of the full molecular pressure tensor
163 >  
164 >  const double p_convert = 1.63882576e8;
165 >  double press[3][3];
166 >  double pressureY;
167  
168 <  return 0.0;
168 >  this->getPressureTensor(press);
169 >
170 >  pressureY = p_convert * press[1][1];
171 >
172 >  return pressureY;
173 > }
174 >
175 > double Thermo::getPressureZ() {
176 >
177 >  // Relies on the calculation of the full molecular pressure tensor
178 >  
179 >  const double p_convert = 1.63882576e8;
180 >  double press[3][3];
181 >  double pressureZ;
182 >
183 >  this->getPressureTensor(press);
184 >
185 >  pressureZ = p_convert * press[2][2];
186 >
187 >  return pressureZ;
188 > }
189 >
190 >
191 > void Thermo::getPressureTensor(double press[3][3]){
192 >  // returns pressure tensor in units amu*fs^-2*Ang^-1
193 >  // routine derived via viral theorem description in:
194 >  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
195 >
196 >  const double e_convert = 4.184e-4;
197 >
198 >  double molmass, volume;
199 >  double vcom[3], pcom[3], fcom[3], scaled[3];
200 >  double p_local[9], p_global[9];
201 >  int i, j, k, nMols;
202 >  Molecule* molecules;
203 >
204 >  nMols = info->n_mol;
205 >  molecules = info->molecules;
206 >  //tau = info->tau;
207 >
208 >  // use velocities of molecular centers of mass and molecular masses:
209 >  for (i=0; i < 9; i++) {    
210 >    p_local[i] = 0.0;
211 >    p_global[i] = 0.0;
212 >  }
213 >
214 >  for (i=0; i < info->integrableObjects.size(); i++) {
215 >
216 >    molmass = info->integrableObjects[i]->getMass();
217 >    
218 >    info->integrableObjects[i]->getVel(vcom);
219 >    info->integrableObjects[i]->getPos(pcom);
220 >    info->integrableObjects[i]->getFrc(fcom);
221 >
222 >    matVecMul3(info->HmatInv, pcom, scaled);
223 >  
224 >    for(j=0; j<3; j++)
225 >      scaled[j] -= roundMe(scaled[j]);
226 >
227 >    // calc the wrapped real coordinates from the wrapped scaled coordinates
228 >  
229 >    matVecMul3(info->Hmat, scaled, pcom);
230 >    
231 >    p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert;
232 >    p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert;
233 >    p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert;
234 >    p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert;
235 >    p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert;
236 >    p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert;
237 >    p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert;
238 >    p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert;
239 >    p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert;
240 >    
241 >  }
242 >
243 >  // Get total for entire system from MPI.
244 >
245 > #ifdef IS_MPI
246 >  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
247 > #else
248 >  for (i=0; i<9; i++) {
249 >    p_global[i] = p_local[i];
250 >  }
251 > #endif // is_mpi
252 >
253 >  volume = this->getVolume();
254 >
255 >  for(i = 0; i < 3; i++) {
256 >    for (j = 0; j < 3; j++) {
257 >      k = 3*i + j;
258 >      press[i][j] = p_global[k] /  volume;
259 >
260 >    }
261 >  }
262   }
263  
264   void Thermo::velocitize() {
265    
266 <  double x,y;
267 <  double vx, vy, vz;
153 <  double jx, jy, jz;
154 <  int i, vr, vd; // velocity randomizer loop counters
266 >  double aVel[3], aJ[3], I[3][3];
267 >  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
268    double vdrift[3];
269    double vbar;
270    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
271    double av2;
272    double kebar;
160  int ndf, ndf_local; // number of degrees of freedom
161  int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom
162  int n_atoms;
163  Atom** atoms;
164  DirectionalAtom* dAtom;
273    double temperature;
274 <  int n_oriented;
167 <  int n_constraints;
274 >  int nobj;
275  
276 <  atoms         = entry_plug->atoms;
170 <  n_atoms       = entry_plug->n_atoms;
171 <  temperature   = entry_plug->target_temp;
172 <  n_oriented    = entry_plug->n_oriented;
173 <  n_constraints = entry_plug->n_constraints;
276 >  nobj = info->integrableObjects.size();
277    
278 <  // Raw degrees of freedom that we have to set
176 <  ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented;
177 <
178 <  // Degrees of freedom that can contain kinetic energy
179 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
180 <    - entry_plug->n_constraints;
278 >  temperature   = info->target_temp;
279    
280 < #ifdef IS_MPI
281 <  MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
184 <  MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM);
185 < #else
186 <  ndfRaw = ndfRaw_local;
187 <  ndf = ndf_local;
188 < #endif
189 <  ndf = ndf - 3;
190 <
191 <  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
280 >  kebar = kb * temperature * (double)info->ndfRaw /
281 >    ( 2.0 * (double)info->ndf );
282    
283 <  for(vr = 0; vr < n_atoms; vr++){
283 >  for(vr = 0; vr < nobj; vr++){
284      
285      // uses equipartition theory to solve for vbar in angstrom/fs
286  
287 <    av2 = 2.0 * kebar / atoms[vr]->getMass();
287 >    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
288      vbar = sqrt( av2 );
289  
200 //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
201    
290      // picks random velocities from a gaussian distribution
291      // centered on vbar
292  
293 <    vx = vbar * gaussStream->getGaussian();
294 <    vy = vbar * gaussStream->getGaussian();
295 <    vz = vbar * gaussStream->getGaussian();
293 >    for (j=0; j<3; j++)
294 >      aVel[j] = vbar * gaussStream->getGaussian();
295 >    
296 >    info->integrableObjects[vr]->setVel( aVel );
297 >    
298 >    if(info->integrableObjects[vr]->isDirectional()){
299  
300 <    atoms[vr]->set_vx( vx );
301 <    atoms[vr]->set_vy( vy );
302 <    atoms[vr]->set_vz( vz );
300 >      info->integrableObjects[vr]->getI( I );
301 >
302 >      if (info->integrableObjects[vr]->isLinear()) {
303 >
304 >        l= info->integrableObjects[vr]->linearAxis();
305 >        m = (l+1)%3;
306 >        n = (l+2)%3;
307 >
308 >        aJ[l] = 0.0;
309 >        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 >        aJ[m] = vbar * gaussStream->getGaussian();
311 >        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 >        aJ[n] = vbar * gaussStream->getGaussian();
313 >        
314 >      } else {
315 >        for (j = 0 ; j < 3; j++) {
316 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
317 >          aJ[j] = vbar * gaussStream->getGaussian();
318 >        }      
319 >      } // else isLinear
320 >
321 >      info->integrableObjects[vr]->setJ( aJ );
322 >      
323 >    }//isDirectional
324 >
325    }
326  
327    // Get the Center of Mass drift velocity.
# Line 218 | Line 331 | void Thermo::velocitize() {
331    //  Corrects for the center of mass drift.
332    // sums all the momentum and divides by total mass.
333  
334 <  for(vd = 0; vd < n_atoms; vd++){
334 >  for(vd = 0; vd < nobj; vd++){
335      
336 <    vx = atoms[vd]->get_vx();
224 <    vy = atoms[vd]->get_vy();
225 <    vz = atoms[vd]->get_vz();
226 <        
227 <    vx -= vdrift[0];
228 <    vy -= vdrift[1];
229 <    vz -= vdrift[2];
336 >    info->integrableObjects[vd]->getVel(aVel);
337      
338 <    atoms[vd]->set_vx(vx);
339 <    atoms[vd]->set_vy(vy);
340 <    atoms[vd]->set_vz(vz);
338 >    for (j=0; j < 3; j++)
339 >      aVel[j] -= vdrift[j];
340 >        
341 >    info->integrableObjects[vd]->setVel( aVel );
342    }
235  if( n_oriented ){
236  
237    for( i=0; i<n_atoms; i++ ){
238      
239      if( atoms[i]->isDirectional() ){
240        
241        dAtom = (DirectionalAtom *)atoms[i];
343  
243        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
244        jx = vbar * gaussStream->getGaussian();
245
246        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
247        jy = vbar * gaussStream->getGaussian();
248
249        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
250        jz = vbar * gaussStream->getGaussian();
251        
252        dAtom->setJx( jx );
253        dAtom->setJy( jy );
254        dAtom->setJz( jz );
255      }
256    }  
257  }
344   }
345  
346   void Thermo::getCOMVel(double vdrift[3]){
347  
348    double mtot, mtot_local;
349 +  double aVel[3], amass;
350    double vdrift_local[3];
351 <  int vd, n_atoms;
352 <  Atom** atoms;
351 >  int vd, j;
352 >  int nobj;
353  
354 <  // We are very careless here with the distinction between n_atoms and n_local
268 <  // We should really fix this before someone pokes an eye out.
354 >  nobj   = info->integrableObjects.size();
355  
270  n_atoms = entry_plug->n_atoms;  
271  atoms   = entry_plug->atoms;
272
356    mtot_local = 0.0;
357    vdrift_local[0] = 0.0;
358    vdrift_local[1] = 0.0;
359    vdrift_local[2] = 0.0;
360    
361 <  for(vd = 0; vd < n_atoms; vd++){
361 >  for(vd = 0; vd < nobj; vd++){
362      
363 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
364 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
365 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
363 >    amass = info->integrableObjects[vd]->getMass();
364 >    info->integrableObjects[vd]->getVel( aVel );
365 >
366 >    for(j = 0; j < 3; j++)
367 >      vdrift_local[j] += aVel[j] * amass;
368      
369 <    mtot_local += atoms[vd]->getMass();
369 >    mtot_local += amass;
370    }
371  
372   #ifdef IS_MPI
373 <  MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM);
374 <  MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM);
373 >  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 >  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375   #else
376    mtot = mtot_local;
377    for(vd = 0; vd < 3; vd++) {
# Line 300 | Line 385 | void Thermo::getCOMVel(double vdrift[3]){
385    
386   }
387  
388 + void Thermo::getCOM(double COM[3]){
389 +
390 +  double mtot, mtot_local;
391 +  double aPos[3], amass;
392 +  double COM_local[3];
393 +  int i, j;
394 +  int nobj;
395 +
396 +  mtot_local = 0.0;
397 +  COM_local[0] = 0.0;
398 +  COM_local[1] = 0.0;
399 +  COM_local[2] = 0.0;
400 +
401 +  nobj = info->integrableObjects.size();
402 +  for(i = 0; i < nobj; i++){
403 +    
404 +    amass = info->integrableObjects[i]->getMass();
405 +    info->integrableObjects[i]->getPos( aPos );
406 +
407 +    for(j = 0; j < 3; j++)
408 +      COM_local[j] += aPos[j] * amass;
409 +    
410 +    mtot_local += amass;
411 +  }
412 +
413 + #ifdef IS_MPI
414 +  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 +  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 + #else
417 +  mtot = mtot_local;
418 +  for(i = 0; i < 3; i++) {
419 +    COM[i] = COM_local[i];
420 +  }
421 + #endif
422 +    
423 +  for (i = 0; i < 3; i++) {
424 +    COM[i] = COM[i] / mtot;
425 +  }
426 + }
427 +
428 + void Thermo::removeCOMdrift() {
429 +  double vdrift[3], aVel[3];
430 +  int vd, j, nobj;
431 +
432 +  nobj = info->integrableObjects.size();
433 +
434 +  // Get the Center of Mass drift velocity.
435 +
436 +  getCOMVel(vdrift);
437 +  
438 +  //  Corrects for the center of mass drift.
439 +  // sums all the momentum and divides by total mass.
440 +
441 +  for(vd = 0; vd < nobj; vd++){
442 +    
443 +    info->integrableObjects[vd]->getVel(aVel);
444 +    
445 +    for (j=0; j < 3; j++)
446 +      aVel[j] -= vdrift[j];
447 +        
448 +    info->integrableObjects[vd]->setVel( aVel );
449 +  }
450 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines