ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 445 by gezelter, Thu Apr 3 19:58:24 2003 UTC vs.
Revision 608 by gezelter, Tue Jul 15 14:45:09 2003 UTC

# Line 4 | Line 4 | using namespace std;
4  
5   #ifdef IS_MPI
6   #include <mpi.h>
7 #include <mpi++.h>
7   #endif //is_mpi
8  
9   #include "Thermo.hpp"
# Line 34 | Line 33 | double Thermo::getKinetic(){
33   double Thermo::getKinetic(){
34  
35    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
36 <  double vx2, vy2, vz2;
37 <  double kinetic, v_sqr;
38 <  int kl;
39 <  double jx2, jy2, jz2; // the square of the angular momentums
36 >  double kinetic;
37 >  double amass;
38 >  double aVel[3], aJ[3], I[3][3];
39 >  int j, kl;
40  
41    DirectionalAtom *dAtom;
42  
# Line 52 | Line 51 | double Thermo::getKinetic(){
51    kinetic = 0.0;
52    kinetic_global = 0.0;
53    for( kl=0; kl < n_atoms; kl++ ){
54 +    
55 +    atoms[kl]->getVel(aVel);
56 +    amass = atoms[kl]->getMass();
57 +    
58 +    for (j=0; j < 3; j++)
59 +      kinetic += amass * aVel[j] * aVel[j];
60  
56    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
57    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
58    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
59
60    v_sqr = vx2 + vy2 + vz2;
61    kinetic += atoms[kl]->getMass() * v_sqr;
62
61      if( atoms[kl]->isDirectional() ){
62              
63        dAtom = (DirectionalAtom *)atoms[kl];
64 +
65 +      dAtom->getJ( aJ );
66 +      dAtom->getI( I );
67        
68 <      jx2 = dAtom->getJx() * dAtom->getJx();    
69 <      jy2 = dAtom->getJy() * dAtom->getJy();
69 <      jz2 = dAtom->getJz() * dAtom->getJz();
68 >      for (j=0; j<3; j++)
69 >        kinetic += aJ[j]*aJ[j] / I[j][j];
70        
71      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
72        + (jz2 / dAtom->getIzz());
71      }
72    }
73   #ifdef IS_MPI
74 <  MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
74 >  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
75 >                MPI_SUM, MPI_COMM_WORLD);
76    kinetic = kinetic_global;
77   #endif //is_mpi
78  
# Line 100 | Line 99 | double Thermo::getPotential(){
99      potential_local += molecules[el].getPotential();
100    }
101  
103 #ifdef IS_MPI
104  /*
105  std::cerr << "node " << worldRank << ": before LONG RANGE pot = " << entry_plug->lrPot
106            << "; pot_local = " << potential_local
107            << "; pot = " << potential << "\n";
108  */
109 #endif
110
102    // Get total potential for entire system from MPI.
103   #ifdef IS_MPI
104 <  MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM);
104 >  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
105 >                MPI_SUM, MPI_COMM_WORLD);
106   #else
107    potential = potential_local;
108   #endif // is_mpi
# Line 136 | Line 128 | double Thermo::getTemperature(){
128  
129    const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
130    double temperature;
139  int ndf_local, ndf;
131    
132 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
133 <    - entry_plug->n_constraints;
132 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
133 >  return temperature;
134 > }
135  
136 < #ifdef IS_MPI
145 <  MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
146 < #else
147 <  ndf = ndf_local;
148 < #endif
136 > double Thermo::getEnthalpy() {
137  
138 <  ndf = ndf - 3;
138 >  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
139 >  double u, p, v;
140 >  double press[3][3];
141 >
142 >  u = this->getTotalE();
143 >
144 >  this->getPressureTensor(press);
145 >  p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
146 >
147 >  v = this->getVolume();
148 >
149 >  return (u + (p*v)/e_convert);
150 > }
151 >
152 > double Thermo::getVolume() {
153 >
154 >  return entry_plug->boxVol;
155 > }
156 >
157 > double Thermo::getPressure() {
158 >
159 >  // Relies on the calculation of the full molecular pressure tensor
160    
161 <  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
162 <  return temperature;
161 >  const double p_convert = 1.63882576e8;
162 >  double press[3][3];
163 >  double pressure;
164 >
165 >  this->getPressureTensor(press);
166 >
167 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
168 >
169 >  return pressure;
170   }
171  
172 < double Thermo::getPressure(){
173 <  // returns pressure in units amu*fs^-2*Ang^-1
172 >
173 > void Thermo::getPressureTensor(double press[3][3]){
174 >  // returns pressure tensor in units amu*fs^-2*Ang^-1
175    // routine derived via viral theorem description in:
176    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
177  
178 <  return 0.0;
178 >  const double e_convert = 4.184e-4;
179 >
180 >  double molmass, volume;
181 >  double vcom[3];
182 >  double p_local[9], p_global[9];
183 >  int i, j, k, l, nMols;
184 >  Molecule* molecules;
185 >
186 >  nMols = entry_plug->n_mol;
187 >  molecules = entry_plug->molecules;
188 >  //tau = entry_plug->tau;
189 >
190 >  // use velocities of molecular centers of mass and molecular masses:
191 >  for (i=0; i < 9; i++) {    
192 >    p_local[i] = 0.0;
193 >    p_global[i] = 0.0;
194 >  }
195 >
196 >  for (i=0; i < nMols; i++) {
197 >    molmass = molecules[i].getCOMvel(vcom);
198 >
199 >    p_local[0] += molmass * (vcom[0] * vcom[0]);
200 >    p_local[1] += molmass * (vcom[0] * vcom[1]);
201 >    p_local[2] += molmass * (vcom[0] * vcom[2]);
202 >    p_local[3] += molmass * (vcom[1] * vcom[0]);
203 >    p_local[4] += molmass * (vcom[1] * vcom[1]);
204 >    p_local[5] += molmass * (vcom[1] * vcom[2]);
205 >    p_local[6] += molmass * (vcom[2] * vcom[0]);
206 >    p_local[7] += molmass * (vcom[2] * vcom[1]);
207 >    p_local[8] += molmass * (vcom[2] * vcom[2]);
208 >  }
209 >
210 >  // Get total for entire system from MPI.
211 >
212 > #ifdef IS_MPI
213 >  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
214 > #else
215 >  for (i=0; i<9; i++) {
216 >    p_global[i] = p_local[i];
217 >  }
218 > #endif // is_mpi
219 >
220 >  volume = entry_plug->boxVol;
221 >
222 >  for(i = 0; i < 3; i++) {
223 >    for (j = 0; j < 3; j++) {
224 >      k = 3*i + j;
225 >      l = 3*j + i;
226 >      press[i][j] = (p_global[k] - entry_plug->tau[l]*e_convert) / volume;
227 >    }
228 >  }
229   }
230  
231   void Thermo::velocitize() {
232    
233    double x,y;
234 <  double vx, vy, vz;
235 <  double jx, jy, jz;
169 <  int i, vr, vd; // velocity randomizer loop counters
234 >  double aVel[3], aJ[3], I[3][3];
235 >  int i, j, vr, vd; // velocity randomizer loop counters
236    double vdrift[3];
237    double vbar;
238    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
239    double av2;
240    double kebar;
175  int ndf, ndf_local; // number of degrees of freedom
176  int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom
241    int n_atoms;
242    Atom** atoms;
243    DirectionalAtom* dAtom;
# Line 187 | Line 251 | void Thermo::velocitize() {
251    n_oriented    = entry_plug->n_oriented;
252    n_constraints = entry_plug->n_constraints;
253    
254 <  // Raw degrees of freedom that we have to set
255 <  ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented;
192 <
193 <  // Degrees of freedom that can contain kinetic energy
194 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
195 <    - entry_plug->n_constraints;
254 >  kebar = kb * temperature * (double)entry_plug->ndf /
255 >    ( 2.0 * (double)entry_plug->ndfRaw );
256    
197 #ifdef IS_MPI
198  MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM);
199  MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM);
200 #else
201  ndfRaw = ndfRaw_local;
202  ndf = ndf_local;
203 #endif
204  ndf = ndf - 3;
205
206  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
207  
257    for(vr = 0; vr < n_atoms; vr++){
258      
259      // uses equipartition theory to solve for vbar in angstrom/fs
# Line 217 | Line 266 | void Thermo::velocitize() {
266      // picks random velocities from a gaussian distribution
267      // centered on vbar
268  
269 <    vx = vbar * gaussStream->getGaussian();
270 <    vy = vbar * gaussStream->getGaussian();
271 <    vz = vbar * gaussStream->getGaussian();
269 >    for (j=0; j<3; j++)
270 >      aVel[j] = vbar * gaussStream->getGaussian();
271 >    
272 >    atoms[vr]->setVel( aVel );
273  
224    atoms[vr]->set_vx( vx );
225    atoms[vr]->set_vy( vy );
226    atoms[vr]->set_vz( vz );
274    }
275  
276    // Get the Center of Mass drift velocity.
# Line 235 | Line 282 | void Thermo::velocitize() {
282  
283    for(vd = 0; vd < n_atoms; vd++){
284      
285 <    vx = atoms[vd]->get_vx();
239 <    vy = atoms[vd]->get_vy();
240 <    vz = atoms[vd]->get_vz();
241 <        
242 <    vx -= vdrift[0];
243 <    vy -= vdrift[1];
244 <    vz -= vdrift[2];
285 >    atoms[vd]->getVel(aVel);
286      
287 <    atoms[vd]->set_vx(vx);
288 <    atoms[vd]->set_vy(vy);
289 <    atoms[vd]->set_vz(vz);
287 >    for (j=0; j < 3; j++)
288 >      aVel[j] -= vdrift[j];
289 >        
290 >    atoms[vd]->setVel( aVel );
291    }
292    if( n_oriented ){
293    
# Line 254 | Line 296 | void Thermo::velocitize() {
296        if( atoms[i]->isDirectional() ){
297          
298          dAtom = (DirectionalAtom *)atoms[i];
299 +        dAtom->getI( I );
300 +        
301 +        for (j = 0 ; j < 3; j++) {
302  
303 <        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
304 <        jx = vbar * gaussStream->getGaussian();
303 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
304 >          aJ[j] = vbar * gaussStream->getGaussian();
305  
306 <        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
262 <        jy = vbar * gaussStream->getGaussian();
306 >        }      
307  
308 <        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
309 <        jz = vbar * gaussStream->getGaussian();
266 <        
267 <        dAtom->setJx( jx );
268 <        dAtom->setJy( jy );
269 <        dAtom->setJz( jz );
308 >        dAtom->setJ( aJ );
309 >
310        }
311      }  
312    }
# Line 275 | Line 315 | void Thermo::getCOMVel(double vdrift[3]){
315   void Thermo::getCOMVel(double vdrift[3]){
316  
317    double mtot, mtot_local;
318 +  double aVel[3], amass;
319    double vdrift_local[3];
320 <  int vd, n_atoms;
320 >  int vd, n_atoms, j;
321    Atom** atoms;
322  
323    // We are very careless here with the distinction between n_atoms and n_local
# Line 292 | Line 333 | void Thermo::getCOMVel(double vdrift[3]){
333    
334    for(vd = 0; vd < n_atoms; vd++){
335      
336 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
337 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
338 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
336 >    amass = atoms[vd]->getMass();
337 >    atoms[vd]->getVel( aVel );
338 >
339 >    for(j = 0; j < 3; j++)
340 >      vdrift_local[j] += aVel[j] * amass;
341      
342 <    mtot_local += atoms[vd]->getMass();
342 >    mtot_local += amass;
343    }
344  
345   #ifdef IS_MPI
346 <  MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM);
347 <  MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM);
346 >  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
347 >  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
348   #else
349    mtot = mtot_local;
350    for(vd = 0; vd < 3; vd++) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines