ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 447 by mmeineke, Thu Apr 3 20:21:54 2003 UTC vs.
Revision 1251 by chrisfen, Mon Jun 7 14:09:02 2004 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2   #include <iostream>
3   using namespace std;
4  
# Line 10 | Line 10 | using namespace std;
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12   #include "simError.h"
13 + #include "MatVec3.h"
14  
15   #ifdef IS_MPI
16   #define __C
17   #include "mpiSimulation.hpp"
18   #endif // is_mpi
19  
20 + inline double roundMe( double x ){
21 +          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 + }
23  
24 < #define BASE_SEED 123456789
25 <
26 < Thermo::Thermo( SimInfo* the_entry_plug ) {
23 <  entry_plug = the_entry_plug;
24 <  int baseSeed = BASE_SEED;
24 > Thermo::Thermo( SimInfo* the_info ) {
25 >  info = the_info;
26 >  int baseSeed = the_info->getSeed();
27    
28    gaussStream = new gaussianSPRNG( baseSeed );
29   }
# Line 33 | Line 35 | double Thermo::getKinetic(){
35   double Thermo::getKinetic(){
36  
37    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double vx2, vy2, vz2;
39 <  double kinetic, v_sqr;
40 <  int kl;
41 <  double jx2, jy2, jz2; // the square of the angular momentums
38 >  double kinetic;
39 >  double amass;
40 >  double aVel[3], aJ[3], I[3][3];
41 >  int i, j, k, kl;
42  
41  DirectionalAtom *dAtom;
42
43  int n_atoms;
43    double kinetic_global;
44 <  Atom** atoms;
46 <
44 >  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45    
48  n_atoms = entry_plug->n_atoms;
49  atoms = entry_plug->atoms;
50
46    kinetic = 0.0;
47    kinetic_global = 0.0;
53  for( kl=0; kl < n_atoms; kl++ ){
48  
49 <    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
50 <    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
51 <    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
49 >  for (kl=0; kl<integrableObjects.size(); kl++) {
50 >    integrableObjects[kl]->getVel(aVel);
51 >    amass = integrableObjects[kl]->getMass();
52  
53 <    v_sqr = vx2 + vy2 + vz2;
54 <    kinetic += atoms[kl]->getMass() * v_sqr;
53 >   for(j=0; j<3; j++)
54 >      kinetic += amass*aVel[j]*aVel[j];
55  
56 <    if( atoms[kl]->isDirectional() ){
57 <            
58 <      dAtom = (DirectionalAtom *)atoms[kl];
59 <      
60 <      jx2 = dAtom->getJx() * dAtom->getJx();    
61 <      jy2 = dAtom->getJy() * dAtom->getJy();
62 <      jz2 = dAtom->getJz() * dAtom->getJz();
63 <      
64 <      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
65 <        + (jz2 / dAtom->getIzz());
66 <    }
56 >   if (integrableObjects[kl]->isDirectional()){
57 >
58 >      integrableObjects[kl]->getJ( aJ );
59 >      integrableObjects[kl]->getI( I );
60 >
61 >      if (integrableObjects[kl]->isLinear()) {
62 >        i = integrableObjects[kl]->linearAxis();
63 >        j = (i+1)%3;
64 >        k = (i+2)%3;
65 >        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 >      } else {
67 >        for (j=0; j<3; j++)
68 >          kinetic += aJ[j]*aJ[j] / I[j][j];
69 >      }
70 >   }
71    }
72   #ifdef IS_MPI
73    MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                  MPI_SUM, MPI_COMM_WORLD);
75    kinetic = kinetic_global;
76   #endif //is_mpi
77 <
77 >  
78    kinetic = kinetic * 0.5 / e_convert;
79  
80    return kinetic;
# Line 89 | Line 87 | double Thermo::getPotential(){
87    int el, nSRI;
88    Molecule* molecules;
89  
90 <  molecules = entry_plug->molecules;
91 <  nSRI = entry_plug->n_SRI;
90 >  molecules = info->molecules;
91 >  nSRI = info->n_SRI;
92  
93    potential_local = 0.0;
94    potential = 0.0;
95 <  potential_local += entry_plug->lrPot;
95 >  potential_local += info->lrPot;
96  
97 <  for( el=0; el<entry_plug->n_mol; el++ ){    
97 >  for( el=0; el<info->n_mol; el++ ){    
98      potential_local += molecules[el].getPotential();
99    }
100  
# Line 108 | Line 106 | double Thermo::getPotential(){
106    potential = potential_local;
107   #endif // is_mpi
108  
111 #ifdef IS_MPI
112  /*
113  std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
114  */
115 #endif
116
109    return potential;
110   }
111  
# Line 127 | Line 119 | double Thermo::getTemperature(){
119  
120   double Thermo::getTemperature(){
121  
122 <  const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
122 >  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123    double temperature;
124 <  int ndf_local, ndf;
124 >
125 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 >  return temperature;
127 > }
128 >
129 > double Thermo::getVolume() {
130 >
131 >  return info->boxVol;
132 > }
133 >
134 > double Thermo::getPressure() {
135 >
136 >  // Relies on the calculation of the full molecular pressure tensor
137    
138 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
139 <    - entry_plug->n_constraints;
138 >  const double p_convert = 1.63882576e8;
139 >  double press[3][3];
140 >  double pressure;
141  
142 < #ifdef IS_MPI
138 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
139 < #else
140 <  ndf = ndf_local;
141 < #endif
142 >  this->getPressureTensor(press);
143  
144 <  ndf = ndf - 3;
144 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
145 >
146 >  return pressure;
147 > }
148 >
149 > double Thermo::getPressureX() {
150 >
151 >  // Relies on the calculation of the full molecular pressure tensor
152    
153 <  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
154 <  return temperature;
153 >  const double p_convert = 1.63882576e8;
154 >  double press[3][3];
155 >  double pressureX;
156 >
157 >  this->getPressureTensor(press);
158 >
159 >  pressureX = p_convert * press[0][0];
160 >
161 >  return pressureX;
162   }
163  
164 < double Thermo::getPressure(){
165 <  // returns pressure in units amu*fs^-2*Ang^-1
164 > double Thermo::getPressureY() {
165 >
166 >  // Relies on the calculation of the full molecular pressure tensor
167 >  
168 >  const double p_convert = 1.63882576e8;
169 >  double press[3][3];
170 >  double pressureY;
171 >
172 >  this->getPressureTensor(press);
173 >
174 >  pressureY = p_convert * press[1][1];
175 >
176 >  return pressureY;
177 > }
178 >
179 > double Thermo::getPressureZ() {
180 >
181 >  // Relies on the calculation of the full molecular pressure tensor
182 >  
183 >  const double p_convert = 1.63882576e8;
184 >  double press[3][3];
185 >  double pressureZ;
186 >
187 >  this->getPressureTensor(press);
188 >
189 >  pressureZ = p_convert * press[2][2];
190 >
191 >  return pressureZ;
192 > }
193 >
194 >
195 > void Thermo::getPressureTensor(double press[3][3]){
196 >  // returns pressure tensor in units amu*fs^-2*Ang^-1
197    // routine derived via viral theorem description in:
198    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199  
200 <  return 0.0;
200 >  const double e_convert = 4.184e-4;
201 >
202 >  double molmass, volume;
203 >  double vcom[3];
204 >  double p_local[9], p_global[9];
205 >  int i, j, k;
206 >
207 >
208 >
209 >  for (i=0; i < 9; i++) {    
210 >    p_local[i] = 0.0;
211 >    p_global[i] = 0.0;
212 >  }
213 >
214 >  // use velocities of integrableObjects and their masses:  
215 >
216 >  for (i=0; i < info->integrableObjects.size(); i++) {
217 >
218 >    molmass = info->integrableObjects[i]->getMass();
219 >    
220 >    info->integrableObjects[i]->getVel(vcom);
221 >    
222 >    p_local[0] += molmass * (vcom[0] * vcom[0]);
223 >    p_local[1] += molmass * (vcom[0] * vcom[1]);
224 >    p_local[2] += molmass * (vcom[0] * vcom[2]);
225 >    p_local[3] += molmass * (vcom[1] * vcom[0]);
226 >    p_local[4] += molmass * (vcom[1] * vcom[1]);
227 >    p_local[5] += molmass * (vcom[1] * vcom[2]);
228 >    p_local[6] += molmass * (vcom[2] * vcom[0]);
229 >    p_local[7] += molmass * (vcom[2] * vcom[1]);
230 >    p_local[8] += molmass * (vcom[2] * vcom[2]);
231 >    
232 >  }
233 >
234 >  // Get total for entire system from MPI.
235 >  
236 > #ifdef IS_MPI
237 >  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
238 > #else
239 >  for (i=0; i<9; i++) {
240 >    p_global[i] = p_local[i];
241 >  }
242 > #endif // is_mpi
243 >
244 >  volume = this->getVolume();
245 >
246 >  for(i = 0; i < 3; i++) {
247 >    for (j = 0; j < 3; j++) {
248 >      k = 3*i + j;
249 >      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
250 >    }
251 >  }
252   }
253  
254   void Thermo::velocitize() {
255    
256 <  double x,y;
257 <  double vx, vy, vz;
161 <  double jx, jy, jz;
162 <  int i, vr, vd; // velocity randomizer loop counters
256 >  double aVel[3], aJ[3], I[3][3];
257 >  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258    double vdrift[3];
259    double vbar;
260    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261    double av2;
262    double kebar;
263 <  int ndf, ndf_local; // number of degrees of freedom
264 <  int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom
170 <  int n_atoms;
171 <  Atom** atoms;
172 <  DirectionalAtom* dAtom;
173 <  double temperature;
174 <  int n_oriented;
175 <  int n_constraints;
263 >  double temperature;
264 >  int nobj;
265  
266 <  atoms         = entry_plug->atoms;
178 <  n_atoms       = entry_plug->n_atoms;
179 <  temperature   = entry_plug->target_temp;
180 <  n_oriented    = entry_plug->n_oriented;
181 <  n_constraints = entry_plug->n_constraints;
266 >  nobj = info->integrableObjects.size();
267    
268 <  // Raw degrees of freedom that we have to set
184 <  ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented;
185 <
186 <  // Degrees of freedom that can contain kinetic energy
187 <  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
188 <    - entry_plug->n_constraints;
268 >  temperature   = info->target_temp;
269    
270 < #ifdef IS_MPI
271 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
192 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
193 < #else
194 <  ndfRaw = ndfRaw_local;
195 <  ndf = ndf_local;
196 < #endif
197 <  ndf = ndf - 3;
198 <
199 <  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
270 >  kebar = kb * temperature * (double)info->ndfRaw /
271 >    ( 2.0 * (double)info->ndf );
272    
273 <  for(vr = 0; vr < n_atoms; vr++){
273 >  for(vr = 0; vr < nobj; vr++){
274      
275      // uses equipartition theory to solve for vbar in angstrom/fs
276  
277 <    av2 = 2.0 * kebar / atoms[vr]->getMass();
277 >    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
278      vbar = sqrt( av2 );
279 <
208 < //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
209 <    
279 >
280      // picks random velocities from a gaussian distribution
281      // centered on vbar
282  
283 <    vx = vbar * gaussStream->getGaussian();
284 <    vy = vbar * gaussStream->getGaussian();
285 <    vz = vbar * gaussStream->getGaussian();
283 >    for (j=0; j<3; j++)
284 >      aVel[j] = vbar * gaussStream->getGaussian();
285 >    
286 >    info->integrableObjects[vr]->setVel( aVel );
287 >    
288 >    if(info->integrableObjects[vr]->isDirectional()){
289  
290 <    atoms[vr]->set_vx( vx );
291 <    atoms[vr]->set_vy( vy );
292 <    atoms[vr]->set_vz( vz );
290 >      info->integrableObjects[vr]->getI( I );
291 >
292 >      if (info->integrableObjects[vr]->isLinear()) {
293 >
294 >        l= info->integrableObjects[vr]->linearAxis();
295 >        m = (l+1)%3;
296 >        n = (l+2)%3;
297 >
298 >        aJ[l] = 0.0;
299 >        vbar = sqrt( 2.0 * kebar * I[m][m] );
300 >        aJ[m] = vbar * gaussStream->getGaussian();
301 >        vbar = sqrt( 2.0 * kebar * I[n][n] );
302 >        aJ[n] = vbar * gaussStream->getGaussian();
303 >        
304 >      } else {
305 >        for (j = 0 ; j < 3; j++) {
306 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
307 >          aJ[j] = vbar * gaussStream->getGaussian();
308 >        }      
309 >      } // else isLinear
310 >
311 >      info->integrableObjects[vr]->setJ( aJ );
312 >      
313 >    }//isDirectional
314 >
315    }
316  
317    // Get the Center of Mass drift velocity.
# Line 226 | Line 321 | void Thermo::velocitize() {
321    //  Corrects for the center of mass drift.
322    // sums all the momentum and divides by total mass.
323  
324 <  for(vd = 0; vd < n_atoms; vd++){
324 >  for(vd = 0; vd < nobj; vd++){
325      
326 <    vx = atoms[vd]->get_vx();
232 <    vy = atoms[vd]->get_vy();
233 <    vz = atoms[vd]->get_vz();
234 <        
235 <    vx -= vdrift[0];
236 <    vy -= vdrift[1];
237 <    vz -= vdrift[2];
326 >    info->integrableObjects[vd]->getVel(aVel);
327      
328 <    atoms[vd]->set_vx(vx);
329 <    atoms[vd]->set_vy(vy);
330 <    atoms[vd]->set_vz(vz);
328 >    for (j=0; j < 3; j++)
329 >      aVel[j] -= vdrift[j];
330 >        
331 >    info->integrableObjects[vd]->setVel( aVel );
332    }
243  if( n_oriented ){
244  
245    for( i=0; i<n_atoms; i++ ){
246      
247      if( atoms[i]->isDirectional() ){
248        
249        dAtom = (DirectionalAtom *)atoms[i];
333  
251        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
252        jx = vbar * gaussStream->getGaussian();
253
254        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
255        jy = vbar * gaussStream->getGaussian();
256
257        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
258        jz = vbar * gaussStream->getGaussian();
259        
260        dAtom->setJx( jx );
261        dAtom->setJy( jy );
262        dAtom->setJz( jz );
263      }
264    }  
265  }
334   }
335  
336   void Thermo::getCOMVel(double vdrift[3]){
337  
338    double mtot, mtot_local;
339 +  double aVel[3], amass;
340    double vdrift_local[3];
341 <  int vd, n_atoms;
342 <  Atom** atoms;
341 >  int vd, j;
342 >  int nobj;
343  
344 <  // We are very careless here with the distinction between n_atoms and n_local
276 <  // We should really fix this before someone pokes an eye out.
344 >  nobj   = info->integrableObjects.size();
345  
278  n_atoms = entry_plug->n_atoms;  
279  atoms   = entry_plug->atoms;
280
346    mtot_local = 0.0;
347    vdrift_local[0] = 0.0;
348    vdrift_local[1] = 0.0;
349    vdrift_local[2] = 0.0;
350    
351 <  for(vd = 0; vd < n_atoms; vd++){
351 >  for(vd = 0; vd < nobj; vd++){
352      
353 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
354 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
355 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
353 >    amass = info->integrableObjects[vd]->getMass();
354 >    info->integrableObjects[vd]->getVel( aVel );
355 >
356 >    for(j = 0; j < 3; j++)
357 >      vdrift_local[j] += aVel[j] * amass;
358      
359 <    mtot_local += atoms[vd]->getMass();
359 >    mtot_local += amass;
360    }
361  
362   #ifdef IS_MPI
# Line 308 | Line 375 | void Thermo::getCOMVel(double vdrift[3]){
375    
376   }
377  
378 + void Thermo::getCOM(double COM[3]){
379 +
380 +  double mtot, mtot_local;
381 +  double aPos[3], amass;
382 +  double COM_local[3];
383 +  int i, j;
384 +  int nobj;
385 +
386 +  mtot_local = 0.0;
387 +  COM_local[0] = 0.0;
388 +  COM_local[1] = 0.0;
389 +  COM_local[2] = 0.0;
390 +
391 +  nobj = info->integrableObjects.size();
392 +  for(i = 0; i < nobj; i++){
393 +    
394 +    amass = info->integrableObjects[i]->getMass();
395 +    info->integrableObjects[i]->getPos( aPos );
396 +
397 +    for(j = 0; j < 3; j++)
398 +      COM_local[j] += aPos[j] * amass;
399 +    
400 +    mtot_local += amass;
401 +  }
402 +
403 + #ifdef IS_MPI
404 +  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
405 +  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
406 + #else
407 +  mtot = mtot_local;
408 +  for(i = 0; i < 3; i++) {
409 +    COM[i] = COM_local[i];
410 +  }
411 + #endif
412 +    
413 +  for (i = 0; i < 3; i++) {
414 +    COM[i] = COM[i] / mtot;
415 +  }
416 + }
417 +
418 + void Thermo::removeCOMdrift() {
419 +  double vdrift[3], aVel[3];
420 +  int vd, j, nobj;
421 +
422 +  nobj = info->integrableObjects.size();
423 +
424 +  // Get the Center of Mass drift velocity.
425 +
426 +  getCOMVel(vdrift);
427 +  
428 +  //  Corrects for the center of mass drift.
429 +  // sums all the momentum and divides by total mass.
430 +
431 +  for(vd = 0; vd < nobj; vd++){
432 +    
433 +    info->integrableObjects[vd]->getVel(aVel);
434 +    
435 +    for (j=0; j < 3; j++)
436 +      aVel[j] -= vdrift[j];
437 +        
438 +    info->integrableObjects[vd]->setVel( aVel );
439 +  }
440 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines