--- trunk/OOPSE/libmdtools/Thermo.cpp 2003/04/03 20:21:54 447 +++ trunk/OOPSE/libmdtools/Thermo.cpp 2003/04/08 14:34:30 477 @@ -129,20 +129,8 @@ double Thermo::getTemperature(){ const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) double temperature; - int ndf_local, ndf; - ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented - - entry_plug->n_constraints; - -#ifdef IS_MPI - MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); -#else - ndf = ndf_local; -#endif - - ndf = ndf - 3; - - temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); + temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); return temperature; } @@ -151,7 +139,42 @@ double Thermo::getPressure(){ // routine derived via viral theorem description in: // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 - return 0.0; + const double e_convert = 4.184e-4; + const double p_convert = 1.63882576e8; + double molmass; + double vcom[3]; + double p_local, p_sum, p_mol, virial; + double theBox[3]; + double* tau; + int i, nMols; + Molecule* molecules; + + nMols = entry_plug->n_mol; + molecules = entry_plug->molecules; + tau = entry_plug->tau; + + // use velocities of molecular centers of mass and molecular masses: + p_local = 0.0; + + for (i=0; i < nMols; i++) { + molmass = molecules[i].getCOMvel(vcom); + p_local += (vcom[0]*vcom[0] + vcom[1]*vcom[1] + vcom[2]*vcom[2]) * molmass; + } + + // Get total for entire system from MPI. +#ifdef IS_MPI + MPI_Allreduce(&p_local,&p_sum,1,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); +#else + p_sum = p_local; +#endif // is_mpi + + virial = tau[0] + tau[4] + tau[8]; + entry_plug->getBox(theBox); + + p_mol = p_convert * (p_sum - virial*e_convert) / + (3.0 * theBox[0] * theBox[1]* theBox[2]); + + return p_mol; } void Thermo::velocitize() { @@ -165,8 +188,6 @@ void Thermo::velocitize() { const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. double av2; double kebar; - int ndf, ndf_local; // number of degrees of freedom - int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom int n_atoms; Atom** atoms; DirectionalAtom* dAtom; @@ -180,24 +201,9 @@ void Thermo::velocitize() { n_oriented = entry_plug->n_oriented; n_constraints = entry_plug->n_constraints; - // Raw degrees of freedom that we have to set - ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; - - // Degrees of freedom that can contain kinetic energy - ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented - - entry_plug->n_constraints; + kebar = kb * temperature * (double)entry_plug->ndf / + ( 2.0 * (double)entry_plug->ndfRaw ); -#ifdef IS_MPI - MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); - MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); -#else - ndfRaw = ndfRaw_local; - ndf = ndf_local; -#endif - ndf = ndf - 3; - - kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); - for(vr = 0; vr < n_atoms; vr++){ // uses equipartition theory to solve for vbar in angstrom/fs @@ -253,7 +259,7 @@ void Thermo::velocitize() { vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); jy = vbar * gaussStream->getGaussian(); - + vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); jz = vbar * gaussStream->getGaussian();