ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 483 by gezelter, Wed Apr 9 04:06:43 2003 UTC vs.
Revision 611 by gezelter, Tue Jul 15 17:10:50 2003 UTC

# Line 33 | Line 33 | double Thermo::getKinetic(){
33   double Thermo::getKinetic(){
34  
35    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
36 <  double vx2, vy2, vz2;
37 <  double kinetic, v_sqr;
38 <  int kl;
39 <  double jx2, jy2, jz2; // the square of the angular momentums
36 >  double kinetic;
37 >  double amass;
38 >  double aVel[3], aJ[3], I[3][3];
39 >  int j, kl;
40  
41    DirectionalAtom *dAtom;
42  
# Line 51 | Line 51 | double Thermo::getKinetic(){
51    kinetic = 0.0;
52    kinetic_global = 0.0;
53    for( kl=0; kl < n_atoms; kl++ ){
54 +    
55 +    atoms[kl]->getVel(aVel);
56 +    amass = atoms[kl]->getMass();
57 +    
58 +    for (j=0; j < 3; j++)
59 +      kinetic += amass * aVel[j] * aVel[j];
60  
55    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
56    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
57    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
58
59    v_sqr = vx2 + vy2 + vz2;
60    kinetic += atoms[kl]->getMass() * v_sqr;
61
61      if( atoms[kl]->isDirectional() ){
62              
63        dAtom = (DirectionalAtom *)atoms[kl];
64 +
65 +      dAtom->getJ( aJ );
66 +      dAtom->getI( I );
67        
68 <      jx2 = dAtom->getJx() * dAtom->getJx();    
69 <      jy2 = dAtom->getJy() * dAtom->getJy();
68 <      jz2 = dAtom->getJz() * dAtom->getJz();
68 >      for (j=0; j<3; j++)
69 >        kinetic += aJ[j]*aJ[j] / I[j][j];
70        
70      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
71        + (jz2 / dAtom->getIzz());
71      }
72    }
73   #ifdef IS_MPI
# Line 134 | Line 133 | double Thermo::getPressure() {
133    return temperature;
134   }
135  
136 + double Thermo::getEnthalpy() {
137 +
138 +  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
139 +  double u, p, v;
140 +  double press[3][3];
141 +
142 +  u = this->getTotalE();
143 +
144 +  this->getPressureTensor(press);
145 +  p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
146 +
147 +  v = this->getVolume();
148 +
149 +  return (u + (p*v)/e_convert);
150 + }
151 +
152 + double Thermo::getVolume() {
153 +
154 +  return entry_plug->boxVol;
155 + }
156 +
157   double Thermo::getPressure() {
158 <  // returns the pressure in units of atm
158 >
159    // Relies on the calculation of the full molecular pressure tensor
160    
161    const double p_convert = 1.63882576e8;
162 <  double press[9];
162 >  double press[3][3];
163    double pressure;
164  
165    this->getPressureTensor(press);
166  
167 <  pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0;
167 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
168  
169    return pressure;
170   }
171  
172  
173 < void Thermo::getPressureTensor(double press[9]){
173 > void Thermo::getPressureTensor(double press[3][3]){
174    // returns pressure tensor in units amu*fs^-2*Ang^-1
175    // routine derived via viral theorem description in:
176    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
# Line 160 | Line 180 | void Thermo::getPressureTensor(double press[9]){
180    double molmass, volume;
181    double vcom[3];
182    double p_local[9], p_global[9];
183 <  double theBox[3];
164 <  double* tau;
165 <  int i, nMols;
183 >  int i, j, k, l, nMols;
184    Molecule* molecules;
185  
186    nMols = entry_plug->n_mol;
187    molecules = entry_plug->molecules;
188 <  tau = entry_plug->tau;
188 >  //tau = entry_plug->tau;
189  
190    // use velocities of molecular centers of mass and molecular masses:
191    for (i=0; i < 9; i++) {    
# Line 199 | Line 217 | void Thermo::getPressureTensor(double press[9]){
217    }
218   #endif // is_mpi
219  
220 <  entry_plug->getBox(theBox);
220 >  volume = this->getVolume();
221  
222 <  volume = theBox[0] * theBox[1] * theBox[2];
223 <
224 <  for(i=0; i<9; i++) {
225 <    press[i] = (p_global[i] - tau[i]*e_convert) / volume;
222 >  for(i = 0; i < 3; i++) {
223 >    for (j = 0; j < 3; j++) {
224 >      k = 3*i + j;
225 >      press[i][j] = (p_global[k] + entry_plug->tau[k]*e_convert) / volume;
226 >    }
227    }
228   }
229  
230   void Thermo::velocitize() {
231    
232    double x,y;
233 <  double vx, vy, vz;
234 <  double jx, jy, jz;
216 <  int i, vr, vd; // velocity randomizer loop counters
233 >  double aVel[3], aJ[3], I[3][3];
234 >  int i, j, vr, vd; // velocity randomizer loop counters
235    double vdrift[3];
236    double vbar;
237    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
# Line 247 | Line 265 | void Thermo::velocitize() {
265      // picks random velocities from a gaussian distribution
266      // centered on vbar
267  
268 <    vx = vbar * gaussStream->getGaussian();
269 <    vy = vbar * gaussStream->getGaussian();
270 <    vz = vbar * gaussStream->getGaussian();
268 >    for (j=0; j<3; j++)
269 >      aVel[j] = vbar * gaussStream->getGaussian();
270 >    
271 >    atoms[vr]->setVel( aVel );
272  
254    atoms[vr]->set_vx( vx );
255    atoms[vr]->set_vy( vy );
256    atoms[vr]->set_vz( vz );
273    }
274  
275    // Get the Center of Mass drift velocity.
# Line 265 | Line 281 | void Thermo::velocitize() {
281  
282    for(vd = 0; vd < n_atoms; vd++){
283      
284 <    vx = atoms[vd]->get_vx();
269 <    vy = atoms[vd]->get_vy();
270 <    vz = atoms[vd]->get_vz();
271 <        
272 <    vx -= vdrift[0];
273 <    vy -= vdrift[1];
274 <    vz -= vdrift[2];
284 >    atoms[vd]->getVel(aVel);
285      
286 <    atoms[vd]->set_vx(vx);
287 <    atoms[vd]->set_vy(vy);
288 <    atoms[vd]->set_vz(vz);
286 >    for (j=0; j < 3; j++)
287 >      aVel[j] -= vdrift[j];
288 >        
289 >    atoms[vd]->setVel( aVel );
290    }
291    if( n_oriented ){
292    
# Line 284 | Line 295 | void Thermo::velocitize() {
295        if( atoms[i]->isDirectional() ){
296          
297          dAtom = (DirectionalAtom *)atoms[i];
298 +        dAtom->getI( I );
299 +        
300 +        for (j = 0 ; j < 3; j++) {
301  
302 <        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
303 <        jx = vbar * gaussStream->getGaussian();
302 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
303 >          aJ[j] = vbar * gaussStream->getGaussian();
304  
305 <        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
306 <        jy = vbar * gaussStream->getGaussian();
307 <        
308 <        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
295 <        jz = vbar * gaussStream->getGaussian();
296 <        
297 <        dAtom->setJx( jx );
298 <        dAtom->setJy( jy );
299 <        dAtom->setJz( jz );
305 >        }      
306 >
307 >        dAtom->setJ( aJ );
308 >
309        }
310      }  
311    }
# Line 305 | Line 314 | void Thermo::getCOMVel(double vdrift[3]){
314   void Thermo::getCOMVel(double vdrift[3]){
315  
316    double mtot, mtot_local;
317 +  double aVel[3], amass;
318    double vdrift_local[3];
319 <  int vd, n_atoms;
319 >  int vd, n_atoms, j;
320    Atom** atoms;
321  
322    // We are very careless here with the distinction between n_atoms and n_local
# Line 322 | Line 332 | void Thermo::getCOMVel(double vdrift[3]){
332    
333    for(vd = 0; vd < n_atoms; vd++){
334      
335 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
336 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
337 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
335 >    amass = atoms[vd]->getMass();
336 >    atoms[vd]->getVel( aVel );
337 >
338 >    for(j = 0; j < 3; j++)
339 >      vdrift_local[j] += aVel[j] * amass;
340      
341 <    mtot_local += atoms[vd]->getMass();
341 >    mtot_local += amass;
342    }
343  
344   #ifdef IS_MPI

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines