ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 486 by mmeineke, Thu Apr 10 16:22:00 2003 UTC vs.
Revision 608 by gezelter, Tue Jul 15 14:45:09 2003 UTC

# Line 33 | Line 33 | double Thermo::getKinetic(){
33   double Thermo::getKinetic(){
34  
35    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
36 <  double vx2, vy2, vz2;
37 <  double kinetic, v_sqr;
38 <  int kl;
39 <  double jx2, jy2, jz2; // the square of the angular momentums
36 >  double kinetic;
37 >  double amass;
38 >  double aVel[3], aJ[3], I[3][3];
39 >  int j, kl;
40  
41    DirectionalAtom *dAtom;
42  
# Line 51 | Line 51 | double Thermo::getKinetic(){
51    kinetic = 0.0;
52    kinetic_global = 0.0;
53    for( kl=0; kl < n_atoms; kl++ ){
54 +    
55 +    atoms[kl]->getVel(aVel);
56 +    amass = atoms[kl]->getMass();
57 +    
58 +    for (j=0; j < 3; j++)
59 +      kinetic += amass * aVel[j] * aVel[j];
60  
55    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
56    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
57    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
58
59    v_sqr = vx2 + vy2 + vz2;
60    kinetic += atoms[kl]->getMass() * v_sqr;
61
61      if( atoms[kl]->isDirectional() ){
62              
63        dAtom = (DirectionalAtom *)atoms[kl];
64 +
65 +      dAtom->getJ( aJ );
66 +      dAtom->getI( I );
67        
68 <      jx2 = dAtom->getJx() * dAtom->getJx();    
69 <      jy2 = dAtom->getJy() * dAtom->getJy();
68 <      jz2 = dAtom->getJz() * dAtom->getJz();
68 >      for (j=0; j<3; j++)
69 >        kinetic += aJ[j]*aJ[j] / I[j][j];
70        
70      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
71        + (jz2 / dAtom->getIzz());
71      }
72    }
73   #ifdef IS_MPI
# Line 138 | Line 137 | double Thermo::getEnthalpy() {
137  
138    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
139    double u, p, v;
140 <  double press[9];
140 >  double press[3][3];
141  
142    u = this->getTotalE();
143  
144    this->getPressureTensor(press);
145 <  p = (press[0] + press[4] + press[8]) / 3.0;
145 >  p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
146  
147    v = this->getVolume();
148  
# Line 151 | Line 150 | double Thermo::getVolume() {
150   }
151  
152   double Thermo::getVolume() {
154  double theBox[3];
153  
154 <  entry_plug->getBox(theBox);
157 <  return (theBox[0] * theBox[1] * theBox[2]);
154 >  return entry_plug->boxVol;
155   }
156  
157   double Thermo::getPressure() {
158 <  // returns the pressure in units of atm
158 >
159    // Relies on the calculation of the full molecular pressure tensor
160    
161    const double p_convert = 1.63882576e8;
162 <  double press[9];
162 >  double press[3][3];
163    double pressure;
164  
165    this->getPressureTensor(press);
166  
167 <  pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0;
167 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
168  
169    return pressure;
170   }
171  
172  
173 < void Thermo::getPressureTensor(double press[9]){
173 > void Thermo::getPressureTensor(double press[3][3]){
174    // returns pressure tensor in units amu*fs^-2*Ang^-1
175    // routine derived via viral theorem description in:
176    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
# Line 183 | Line 180 | void Thermo::getPressureTensor(double press[9]){
180    double molmass, volume;
181    double vcom[3];
182    double p_local[9], p_global[9];
183 <  double theBox[3];
187 <  //double* tau;
188 <  int i, nMols;
183 >  int i, j, k, l, nMols;
184    Molecule* molecules;
185  
186    nMols = entry_plug->n_mol;
# Line 222 | Line 217 | void Thermo::getPressureTensor(double press[9]){
217    }
218   #endif // is_mpi
219  
220 <  entry_plug->getBox(theBox);
220 >  volume = entry_plug->boxVol;
221  
222 <  volume = theBox[0] * theBox[1] * theBox[2];
223 <
224 <  for(i=0; i<9; i++) {
225 <    press[i] = (p_global[i] - entry_plug->tau[i]*e_convert) / volume;
222 >  for(i = 0; i < 3; i++) {
223 >    for (j = 0; j < 3; j++) {
224 >      k = 3*i + j;
225 >      l = 3*j + i;
226 >      press[i][j] = (p_global[k] - entry_plug->tau[l]*e_convert) / volume;
227 >    }
228    }
229   }
230  
231   void Thermo::velocitize() {
232    
233    double x,y;
234 <  double vx, vy, vz;
235 <  double jx, jy, jz;
239 <  int i, vr, vd; // velocity randomizer loop counters
234 >  double aVel[3], aJ[3], I[3][3];
235 >  int i, j, vr, vd; // velocity randomizer loop counters
236    double vdrift[3];
237    double vbar;
238    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
# Line 270 | Line 266 | void Thermo::velocitize() {
266      // picks random velocities from a gaussian distribution
267      // centered on vbar
268  
269 <    vx = vbar * gaussStream->getGaussian();
270 <    vy = vbar * gaussStream->getGaussian();
271 <    vz = vbar * gaussStream->getGaussian();
269 >    for (j=0; j<3; j++)
270 >      aVel[j] = vbar * gaussStream->getGaussian();
271 >    
272 >    atoms[vr]->setVel( aVel );
273  
277    atoms[vr]->set_vx( vx );
278    atoms[vr]->set_vy( vy );
279    atoms[vr]->set_vz( vz );
274    }
275  
276    // Get the Center of Mass drift velocity.
# Line 288 | Line 282 | void Thermo::velocitize() {
282  
283    for(vd = 0; vd < n_atoms; vd++){
284      
285 <    vx = atoms[vd]->get_vx();
292 <    vy = atoms[vd]->get_vy();
293 <    vz = atoms[vd]->get_vz();
294 <        
295 <    vx -= vdrift[0];
296 <    vy -= vdrift[1];
297 <    vz -= vdrift[2];
285 >    atoms[vd]->getVel(aVel);
286      
287 <    atoms[vd]->set_vx(vx);
288 <    atoms[vd]->set_vy(vy);
289 <    atoms[vd]->set_vz(vz);
287 >    for (j=0; j < 3; j++)
288 >      aVel[j] -= vdrift[j];
289 >        
290 >    atoms[vd]->setVel( aVel );
291    }
292    if( n_oriented ){
293    
# Line 307 | Line 296 | void Thermo::velocitize() {
296        if( atoms[i]->isDirectional() ){
297          
298          dAtom = (DirectionalAtom *)atoms[i];
299 +        dAtom->getI( I );
300 +        
301 +        for (j = 0 ; j < 3; j++) {
302  
303 <        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
304 <        jx = vbar * gaussStream->getGaussian();
303 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
304 >          aJ[j] = vbar * gaussStream->getGaussian();
305  
306 <        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
307 <        jy = vbar * gaussStream->getGaussian();
308 <        
309 <        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
318 <        jz = vbar * gaussStream->getGaussian();
319 <        
320 <        dAtom->setJx( jx );
321 <        dAtom->setJy( jy );
322 <        dAtom->setJz( jz );
306 >        }      
307 >
308 >        dAtom->setJ( aJ );
309 >
310        }
311      }  
312    }
# Line 328 | Line 315 | void Thermo::getCOMVel(double vdrift[3]){
315   void Thermo::getCOMVel(double vdrift[3]){
316  
317    double mtot, mtot_local;
318 +  double aVel[3], amass;
319    double vdrift_local[3];
320 <  int vd, n_atoms;
320 >  int vd, n_atoms, j;
321    Atom** atoms;
322  
323    // We are very careless here with the distinction between n_atoms and n_local
# Line 345 | Line 333 | void Thermo::getCOMVel(double vdrift[3]){
333    
334    for(vd = 0; vd < n_atoms; vd++){
335      
336 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
337 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
338 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
336 >    amass = atoms[vd]->getMass();
337 >    atoms[vd]->getVel( aVel );
338 >
339 >    for(j = 0; j < 3; j++)
340 >      vdrift_local[j] += aVel[j] * amass;
341      
342 <    mtot_local += atoms[vd]->getMass();
342 >    mtot_local += amass;
343    }
344  
345   #ifdef IS_MPI

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines