ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 590 by mmeineke, Thu Jul 10 22:15:53 2003 UTC vs.
Revision 1133 by gezelter, Mon Apr 26 14:29:18 2004 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2   #include <iostream>
3   using namespace std;
4  
# Line 10 | Line 10 | using namespace std;
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12   #include "simError.h"
13 + #include "MatVec3.h"
14  
15   #ifdef IS_MPI
16   #define __C
17   #include "mpiSimulation.hpp"
18   #endif // is_mpi
19  
20 + inline double roundMe( double x ){
21 +          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 + }
23  
24 < #define BASE_SEED 123456789
25 <
26 < Thermo::Thermo( SimInfo* the_entry_plug ) {
23 <  entry_plug = the_entry_plug;
24 <  int baseSeed = BASE_SEED;
24 > Thermo::Thermo( SimInfo* the_info ) {
25 >  info = the_info;
26 >  int baseSeed = the_info->getSeed();
27    
28    gaussStream = new gaussianSPRNG( baseSeed );
29   }
# Line 33 | Line 35 | double Thermo::getKinetic(){
35   double Thermo::getKinetic(){
36  
37    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double vx2, vy2, vz2;
39 <  double kinetic, v_sqr;
40 <  int kl;
41 <  double jx2, jy2, jz2; // the square of the angular momentums
38 >  double kinetic;
39 >  double amass;
40 >  double aVel[3], aJ[3], I[3][3];
41 >  int i, j, k, kl;
42  
41  DirectionalAtom *dAtom;
42
43  int n_atoms;
43    double kinetic_global;
44 <  Atom** atoms;
46 <
44 >  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45    
48  n_atoms = entry_plug->n_atoms;
49  atoms = entry_plug->atoms;
50
46    kinetic = 0.0;
47    kinetic_global = 0.0;
53  for( kl=0; kl < n_atoms; kl++ ){
48  
49 <    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
50 <    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
51 <    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
49 >  for (kl=0; kl<integrableObjects.size(); kl++) {
50 >    integrableObjects[kl]->getVel(aVel);
51 >    amass = integrableObjects[kl]->getMass();
52  
53 <    v_sqr = vx2 + vy2 + vz2;
54 <    kinetic += atoms[kl]->getMass() * v_sqr;
53 >   for(j=0; j<3; j++)
54 >      kinetic += amass*aVel[j]*aVel[j];
55  
56 <    if( atoms[kl]->isDirectional() ){
57 <            
58 <      dAtom = (DirectionalAtom *)atoms[kl];
59 <      
60 <      jx2 = dAtom->getJx() * dAtom->getJx();    
61 <      jy2 = dAtom->getJy() * dAtom->getJy();
62 <      jz2 = dAtom->getJz() * dAtom->getJz();
63 <      
64 <      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
65 <        + (jz2 / dAtom->getIzz());
66 <    }
56 >   if (integrableObjects[kl]->isDirectional()){
57 >
58 >      integrableObjects[kl]->getJ( aJ );
59 >      integrableObjects[kl]->getI( I );
60 >
61 >      if (integrableObjects[kl]->isLinear()) {
62 >        i = integrableObjects[kl]->linearAxis();
63 >        j = (i+1)%3;
64 >        k = (i+2)%3;
65 >        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 >      } else {
67 >        for (j=0; j<3; j++)
68 >          kinetic += aJ[j]*aJ[j] / I[j][j];
69 >      }
70 >   }
71    }
72   #ifdef IS_MPI
73    MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                  MPI_SUM, MPI_COMM_WORLD);
75    kinetic = kinetic_global;
76   #endif //is_mpi
77 <
77 >  
78    kinetic = kinetic * 0.5 / e_convert;
79  
80    return kinetic;
# Line 89 | Line 87 | double Thermo::getPotential(){
87    int el, nSRI;
88    Molecule* molecules;
89  
90 <  molecules = entry_plug->molecules;
91 <  nSRI = entry_plug->n_SRI;
90 >  molecules = info->molecules;
91 >  nSRI = info->n_SRI;
92  
93    potential_local = 0.0;
94    potential = 0.0;
95 <  potential_local += entry_plug->lrPot;
95 >  potential_local += info->lrPot;
96  
97 <  for( el=0; el<entry_plug->n_mol; el++ ){    
97 >  for( el=0; el<info->n_mol; el++ ){    
98      potential_local += molecules[el].getPotential();
99    }
100  
# Line 108 | Line 106 | double Thermo::getPotential(){
106    potential = potential_local;
107   #endif // is_mpi
108  
111 #ifdef IS_MPI
112  /*
113  std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
114  */
115 #endif
116
109    return potential;
110   }
111  
# Line 127 | Line 119 | double Thermo::getTemperature(){
119  
120   double Thermo::getTemperature(){
121  
122 <  const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
122 >  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123    double temperature;
124 <  
125 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
124 >
125 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126    return temperature;
127   }
128  
129 < double Thermo::getEnthalpy() {
129 > double Thermo::getVolume() {
130  
131 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
132 <  double u, p, v;
141 <  double press[3][3];
131 >  return info->boxVol;
132 > }
133  
134 <  u = this->getTotalE();
134 > double Thermo::getPressure() {
135  
136 +  // Relies on the calculation of the full molecular pressure tensor
137 +  
138 +  const double p_convert = 1.63882576e8;
139 +  double press[3][3];
140 +  double pressure;
141 +
142    this->getPressureTensor(press);
146  p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
143  
144 <  v = this->getVolume();
144 >  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
145  
146 <  return (u + (p*v)/e_convert);
146 >  return pressure;
147   }
148  
149 < double Thermo::getVolume() {
149 > double Thermo::getPressureX() {
150  
151 <  return entry_plug->boxVol;
151 >  // Relies on the calculation of the full molecular pressure tensor
152 >  
153 >  const double p_convert = 1.63882576e8;
154 >  double press[3][3];
155 >  double pressureX;
156 >
157 >  this->getPressureTensor(press);
158 >
159 >  pressureX = p_convert * press[0][0];
160 >
161 >  return pressureX;
162   }
163  
164 < double Thermo::getPressure() {
164 > double Thermo::getPressureY() {
165  
166    // Relies on the calculation of the full molecular pressure tensor
167    
168    const double p_convert = 1.63882576e8;
169    double press[3][3];
170 <  double pressure;
170 >  double pressureY;
171  
172    this->getPressureTensor(press);
173  
174 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
174 >  pressureY = p_convert * press[1][1];
175  
176 <  return pressure;
176 >  return pressureY;
177   }
178  
179 + double Thermo::getPressureZ() {
180  
181 +  // Relies on the calculation of the full molecular pressure tensor
182 +  
183 +  const double p_convert = 1.63882576e8;
184 +  double press[3][3];
185 +  double pressureZ;
186 +
187 +  this->getPressureTensor(press);
188 +
189 +  pressureZ = p_convert * press[2][2];
190 +
191 +  return pressureZ;
192 + }
193 +
194 +
195   void Thermo::getPressureTensor(double press[3][3]){
196    // returns pressure tensor in units amu*fs^-2*Ang^-1
197    // routine derived via viral theorem description in:
# Line 179 | Line 200 | void Thermo::getPressureTensor(double press[3][3]){
200    const double e_convert = 4.184e-4;
201  
202    double molmass, volume;
203 <  double vcom[3];
203 >  double vcom[3], pcom[3], fcom[3], scaled[3];
204    double p_local[9], p_global[9];
205 <  int i, j, k, l, nMols;
205 >  int i, j, k, nMols;
206    Molecule* molecules;
207  
208 <  nMols = entry_plug->n_mol;
209 <  molecules = entry_plug->molecules;
210 <  //tau = entry_plug->tau;
208 >  nMols = info->n_mol;
209 >  molecules = info->molecules;
210 >  //tau = info->tau;
211  
212    // use velocities of molecular centers of mass and molecular masses:
213    for (i=0; i < 9; i++) {    
# Line 194 | Line 215 | void Thermo::getPressureTensor(double press[3][3]){
215      p_global[i] = 0.0;
216    }
217  
218 <  for (i=0; i < nMols; i++) {
198 <    molmass = molecules[i].getCOMvel(vcom);
218 >  for (i=0; i < info->integrableObjects.size(); i++) {
219  
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
220 >    molmass = info->integrableObjects[i]->getMass();
221 >    
222 >    info->integrableObjects[i]->getVel(vcom);
223 >    info->integrableObjects[i]->getPos(pcom);
224 >    info->integrableObjects[i]->getFrc(fcom);
225 >
226 >    matVecMul3(info->HmatInv, pcom, scaled);
227 >  
228 >    for(j=0; j<3; j++)
229 >      scaled[j] -= roundMe(scaled[j]);
230 >
231 >    // calc the wrapped real coordinates from the wrapped scaled coordinates
232 >  
233 >    matVecMul3(info->Hmat, scaled, pcom);
234 >    
235 >    p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert;
236 >    p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert;
237 >    p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert;
238 >    p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert;
239 >    p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert;
240 >    p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert;
241 >    p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert;
242 >    p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert;
243 >    p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert;
244 >    
245    }
246  
247    // Get total for entire system from MPI.
# Line 218 | Line 254 | void Thermo::getPressureTensor(double press[3][3]){
254    }
255   #endif // is_mpi
256  
257 <  volume = entry_plug->boxVol;
257 >  volume = this->getVolume();
258  
259    for(i = 0; i < 3; i++) {
260      for (j = 0; j < 3; j++) {
261        k = 3*i + j;
262 <      l = 3*j + i;
263 <      press[i][j] = (p_global[k] - entry_plug->tau[l]*e_convert) / volume;
262 >      press[i][j] = p_global[k] /  volume;
263 >
264      }
265    }
266   }
267  
268   void Thermo::velocitize() {
269    
270 <  double x,y;
271 <  double vx, vy, vz;
236 <  double jx, jy, jz;
237 <  int i, vr, vd; // velocity randomizer loop counters
270 >  double aVel[3], aJ[3], I[3][3];
271 >  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
272    double vdrift[3];
273    double vbar;
274    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
275    double av2;
276    double kebar;
243  int n_atoms;
244  Atom** atoms;
245  DirectionalAtom* dAtom;
277    double temperature;
278 <  int n_oriented;
248 <  int n_constraints;
278 >  int nobj;
279  
280 <  atoms         = entry_plug->atoms;
251 <  n_atoms       = entry_plug->n_atoms;
252 <  temperature   = entry_plug->target_temp;
253 <  n_oriented    = entry_plug->n_oriented;
254 <  n_constraints = entry_plug->n_constraints;
280 >  nobj = info->integrableObjects.size();
281    
282 <  kebar = kb * temperature * (double)entry_plug->ndf /
257 <    ( 2.0 * (double)entry_plug->ndfRaw );
282 >  temperature   = info->target_temp;
283    
284 <  for(vr = 0; vr < n_atoms; vr++){
284 >  kebar = kb * temperature * (double)info->ndfRaw /
285 >    ( 2.0 * (double)info->ndf );
286 >  
287 >  for(vr = 0; vr < nobj; vr++){
288      
289      // uses equipartition theory to solve for vbar in angstrom/fs
290  
291 <    av2 = 2.0 * kebar / atoms[vr]->getMass();
291 >    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
292      vbar = sqrt( av2 );
293 <
266 < //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
267 <    
293 >
294      // picks random velocities from a gaussian distribution
295      // centered on vbar
296  
297 <    vx = vbar * gaussStream->getGaussian();
298 <    vy = vbar * gaussStream->getGaussian();
299 <    vz = vbar * gaussStream->getGaussian();
297 >    for (j=0; j<3; j++)
298 >      aVel[j] = vbar * gaussStream->getGaussian();
299 >    
300 >    info->integrableObjects[vr]->setVel( aVel );
301 >    
302 >    if(info->integrableObjects[vr]->isDirectional()){
303  
304 <    atoms[vr]->set_vx( vx );
305 <    atoms[vr]->set_vy( vy );
306 <    atoms[vr]->set_vz( vz );
304 >      info->integrableObjects[vr]->getI( I );
305 >
306 >      if (info->integrableObjects[vr]->isLinear()) {
307 >
308 >        l= info->integrableObjects[vr]->linearAxis();
309 >        m = (l+1)%3;
310 >        n = (l+2)%3;
311 >
312 >        aJ[l] = 0.0;
313 >        vbar = sqrt( 2.0 * kebar * I[m][m] );
314 >        aJ[m] = vbar * gaussStream->getGaussian();
315 >        vbar = sqrt( 2.0 * kebar * I[n][n] );
316 >        aJ[n] = vbar * gaussStream->getGaussian();
317 >        
318 >      } else {
319 >        for (j = 0 ; j < 3; j++) {
320 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
321 >          aJ[j] = vbar * gaussStream->getGaussian();
322 >        }      
323 >      } // else isLinear
324 >
325 >      info->integrableObjects[vr]->setJ( aJ );
326 >      
327 >    }//isDirectional
328 >
329    }
330  
331    // Get the Center of Mass drift velocity.
# Line 284 | Line 335 | void Thermo::velocitize() {
335    //  Corrects for the center of mass drift.
336    // sums all the momentum and divides by total mass.
337  
338 <  for(vd = 0; vd < n_atoms; vd++){
338 >  for(vd = 0; vd < nobj; vd++){
339      
340 <    vx = atoms[vd]->get_vx();
290 <    vy = atoms[vd]->get_vy();
291 <    vz = atoms[vd]->get_vz();
292 <        
293 <    vx -= vdrift[0];
294 <    vy -= vdrift[1];
295 <    vz -= vdrift[2];
340 >    info->integrableObjects[vd]->getVel(aVel);
341      
342 <    atoms[vd]->set_vx(vx);
343 <    atoms[vd]->set_vy(vy);
299 <    atoms[vd]->set_vz(vz);
300 <  }
301 <  if( n_oriented ){
302 <  
303 <    for( i=0; i<n_atoms; i++ ){
304 <      
305 <      if( atoms[i]->isDirectional() ){
306 <        
307 <        dAtom = (DirectionalAtom *)atoms[i];
308 <
309 <        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
310 <        jx = vbar * gaussStream->getGaussian();
311 <
312 <        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
313 <        jy = vbar * gaussStream->getGaussian();
342 >    for (j=0; j < 3; j++)
343 >      aVel[j] -= vdrift[j];
344          
345 <        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
316 <        jz = vbar * gaussStream->getGaussian();
317 <        
318 <        dAtom->setJx( jx );
319 <        dAtom->setJy( jy );
320 <        dAtom->setJz( jz );
321 <      }
322 <    }  
345 >    info->integrableObjects[vd]->setVel( aVel );
346    }
347 +
348   }
349  
350   void Thermo::getCOMVel(double vdrift[3]){
351  
352    double mtot, mtot_local;
353 +  double aVel[3], amass;
354    double vdrift_local[3];
355 <  int vd, n_atoms;
356 <  Atom** atoms;
355 >  int vd, j;
356 >  int nobj;
357  
358 <  // We are very careless here with the distinction between n_atoms and n_local
334 <  // We should really fix this before someone pokes an eye out.
358 >  nobj   = info->integrableObjects.size();
359  
336  n_atoms = entry_plug->n_atoms;  
337  atoms   = entry_plug->atoms;
338
360    mtot_local = 0.0;
361    vdrift_local[0] = 0.0;
362    vdrift_local[1] = 0.0;
363    vdrift_local[2] = 0.0;
364    
365 <  for(vd = 0; vd < n_atoms; vd++){
365 >  for(vd = 0; vd < nobj; vd++){
366      
367 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
368 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
369 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
367 >    amass = info->integrableObjects[vd]->getMass();
368 >    info->integrableObjects[vd]->getVel( aVel );
369 >
370 >    for(j = 0; j < 3; j++)
371 >      vdrift_local[j] += aVel[j] * amass;
372      
373 <    mtot_local += atoms[vd]->getMass();
373 >    mtot_local += amass;
374    }
375  
376   #ifdef IS_MPI
# Line 366 | Line 389 | void Thermo::getCOMVel(double vdrift[3]){
389    
390   }
391  
392 + void Thermo::getCOM(double COM[3]){
393 +
394 +  double mtot, mtot_local;
395 +  double aPos[3], amass;
396 +  double COM_local[3];
397 +  int i, j;
398 +  int nobj;
399 +
400 +  mtot_local = 0.0;
401 +  COM_local[0] = 0.0;
402 +  COM_local[1] = 0.0;
403 +  COM_local[2] = 0.0;
404 +
405 +  nobj = info->integrableObjects.size();
406 +  for(i = 0; i < nobj; i++){
407 +    
408 +    amass = info->integrableObjects[i]->getMass();
409 +    info->integrableObjects[i]->getPos( aPos );
410 +
411 +    for(j = 0; j < 3; j++)
412 +      COM_local[j] += aPos[j] * amass;
413 +    
414 +    mtot_local += amass;
415 +  }
416 +
417 + #ifdef IS_MPI
418 +  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
419 +  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
420 + #else
421 +  mtot = mtot_local;
422 +  for(i = 0; i < 3; i++) {
423 +    COM[i] = COM_local[i];
424 +  }
425 + #endif
426 +    
427 +  for (i = 0; i < 3; i++) {
428 +    COM[i] = COM[i] / mtot;
429 +  }
430 + }
431 +
432 + void Thermo::removeCOMdrift() {
433 +  double vdrift[3], aVel[3];
434 +  int vd, j, nobj;
435 +
436 +  nobj = info->integrableObjects.size();
437 +
438 +  // Get the Center of Mass drift velocity.
439 +
440 +  getCOMVel(vdrift);
441 +  
442 +  //  Corrects for the center of mass drift.
443 +  // sums all the momentum and divides by total mass.
444 +
445 +  for(vd = 0; vd < nobj; vd++){
446 +    
447 +    info->integrableObjects[vd]->getVel(aVel);
448 +    
449 +    for (j=0; j < 3; j++)
450 +      aVel[j] -= vdrift[j];
451 +        
452 +    info->integrableObjects[vd]->setVel( aVel );
453 +  }
454 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines