ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 590 by mmeineke, Thu Jul 10 22:15:53 2003 UTC vs.
Revision 614 by mmeineke, Tue Jul 15 17:57:04 2003 UTC

# Line 19 | Line 19 | Thermo::Thermo( SimInfo* the_entry_plug ) {
19  
20   #define BASE_SEED 123456789
21  
22 < Thermo::Thermo( SimInfo* the_entry_plug ) {
23 <  entry_plug = the_entry_plug;
22 > Thermo::Thermo( SimInfo* the_info ) {
23 >  info = the_info;
24    int baseSeed = BASE_SEED;
25    
26    gaussStream = new gaussianSPRNG( baseSeed );
# Line 33 | Line 33 | double Thermo::getKinetic(){
33   double Thermo::getKinetic(){
34  
35    const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
36 <  double vx2, vy2, vz2;
37 <  double kinetic, v_sqr;
38 <  int kl;
39 <  double jx2, jy2, jz2; // the square of the angular momentums
36 >  double kinetic;
37 >  double amass;
38 >  double aVel[3], aJ[3], I[3][3];
39 >  int j, kl;
40  
41    DirectionalAtom *dAtom;
42  
# Line 45 | Line 45 | double Thermo::getKinetic(){
45    Atom** atoms;
46  
47    
48 <  n_atoms = entry_plug->n_atoms;
49 <  atoms = entry_plug->atoms;
48 >  n_atoms = info->n_atoms;
49 >  atoms = info->atoms;
50  
51    kinetic = 0.0;
52    kinetic_global = 0.0;
53    for( kl=0; kl < n_atoms; kl++ ){
54 +    
55 +    atoms[kl]->getVel(aVel);
56 +    amass = atoms[kl]->getMass();
57 +    
58 +    for (j=0; j < 3; j++)
59 +      kinetic += amass * aVel[j] * aVel[j];
60  
55    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
56    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
57    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
58
59    v_sqr = vx2 + vy2 + vz2;
60    kinetic += atoms[kl]->getMass() * v_sqr;
61
61      if( atoms[kl]->isDirectional() ){
62              
63        dAtom = (DirectionalAtom *)atoms[kl];
64 +
65 +      dAtom->getJ( aJ );
66 +      dAtom->getI( I );
67        
68 <      jx2 = dAtom->getJx() * dAtom->getJx();    
69 <      jy2 = dAtom->getJy() * dAtom->getJy();
68 <      jz2 = dAtom->getJz() * dAtom->getJz();
68 >      for (j=0; j<3; j++)
69 >        kinetic += aJ[j]*aJ[j] / I[j][j];
70        
70      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
71        + (jz2 / dAtom->getIzz());
71      }
72    }
73   #ifdef IS_MPI
# Line 89 | Line 88 | double Thermo::getPotential(){
88    int el, nSRI;
89    Molecule* molecules;
90  
91 <  molecules = entry_plug->molecules;
92 <  nSRI = entry_plug->n_SRI;
91 >  molecules = info->molecules;
92 >  nSRI = info->n_SRI;
93  
94    potential_local = 0.0;
95    potential = 0.0;
96 <  potential_local += entry_plug->lrPot;
96 >  potential_local += info->lrPot;
97  
98 <  for( el=0; el<entry_plug->n_mol; el++ ){    
98 >  for( el=0; el<info->n_mol; el++ ){    
99      potential_local += molecules[el].getPotential();
100    }
101  
# Line 130 | Line 129 | double Thermo::getTemperature(){
129    const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
130    double temperature;
131    
132 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
132 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
133    return temperature;
134   }
135  
# Line 152 | Line 151 | double Thermo::getVolume() {
151  
152   double Thermo::getVolume() {
153  
154 <  return entry_plug->boxVol;
154 >  return info->boxVol;
155   }
156  
157   double Thermo::getPressure() {
# Line 181 | Line 180 | void Thermo::getPressureTensor(double press[3][3]){
180    double molmass, volume;
181    double vcom[3];
182    double p_local[9], p_global[9];
183 <  int i, j, k, l, nMols;
183 >  int i, j, k, nMols;
184    Molecule* molecules;
185  
186 <  nMols = entry_plug->n_mol;
187 <  molecules = entry_plug->molecules;
188 <  //tau = entry_plug->tau;
186 >  nMols = info->n_mol;
187 >  molecules = info->molecules;
188 >  //tau = info->tau;
189  
190    // use velocities of molecular centers of mass and molecular masses:
191    for (i=0; i < 9; i++) {    
# Line 218 | Line 217 | void Thermo::getPressureTensor(double press[3][3]){
217    }
218   #endif // is_mpi
219  
220 <  volume = entry_plug->boxVol;
220 >  volume = this->getVolume();
221  
222    for(i = 0; i < 3; i++) {
223      for (j = 0; j < 3; j++) {
224        k = 3*i + j;
225 <      l = 3*j + i;
226 <      press[i][j] = (p_global[k] - entry_plug->tau[l]*e_convert) / volume;
225 >      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
226 >
227      }
228    }
229   }
# Line 232 | Line 231 | void Thermo::velocitize() {
231   void Thermo::velocitize() {
232    
233    double x,y;
234 <  double vx, vy, vz;
235 <  double jx, jy, jz;
237 <  int i, vr, vd; // velocity randomizer loop counters
234 >  double aVel[3], aJ[3], I[3][3];
235 >  int i, j, vr, vd; // velocity randomizer loop counters
236    double vdrift[3];
237    double vbar;
238    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
# Line 247 | Line 245 | void Thermo::velocitize() {
245    int n_oriented;
246    int n_constraints;
247  
248 <  atoms         = entry_plug->atoms;
249 <  n_atoms       = entry_plug->n_atoms;
250 <  temperature   = entry_plug->target_temp;
251 <  n_oriented    = entry_plug->n_oriented;
252 <  n_constraints = entry_plug->n_constraints;
248 >  atoms         = info->atoms;
249 >  n_atoms       = info->n_atoms;
250 >  temperature   = info->target_temp;
251 >  n_oriented    = info->n_oriented;
252 >  n_constraints = info->n_constraints;
253    
254 <  kebar = kb * temperature * (double)entry_plug->ndf /
255 <    ( 2.0 * (double)entry_plug->ndfRaw );
254 >  kebar = kb * temperature * (double)info->ndf /
255 >    ( 2.0 * (double)info->ndfRaw );
256    
257    for(vr = 0; vr < n_atoms; vr++){
258      
# Line 268 | Line 266 | void Thermo::velocitize() {
266      // picks random velocities from a gaussian distribution
267      // centered on vbar
268  
269 <    vx = vbar * gaussStream->getGaussian();
270 <    vy = vbar * gaussStream->getGaussian();
271 <    vz = vbar * gaussStream->getGaussian();
269 >    for (j=0; j<3; j++)
270 >      aVel[j] = vbar * gaussStream->getGaussian();
271 >    
272 >    atoms[vr]->setVel( aVel );
273  
275    atoms[vr]->set_vx( vx );
276    atoms[vr]->set_vy( vy );
277    atoms[vr]->set_vz( vz );
274    }
275  
276    // Get the Center of Mass drift velocity.
# Line 286 | Line 282 | void Thermo::velocitize() {
282  
283    for(vd = 0; vd < n_atoms; vd++){
284      
285 <    vx = atoms[vd]->get_vx();
290 <    vy = atoms[vd]->get_vy();
291 <    vz = atoms[vd]->get_vz();
292 <        
293 <    vx -= vdrift[0];
294 <    vy -= vdrift[1];
295 <    vz -= vdrift[2];
285 >    atoms[vd]->getVel(aVel);
286      
287 <    atoms[vd]->set_vx(vx);
288 <    atoms[vd]->set_vy(vy);
289 <    atoms[vd]->set_vz(vz);
287 >    for (j=0; j < 3; j++)
288 >      aVel[j] -= vdrift[j];
289 >        
290 >    atoms[vd]->setVel( aVel );
291    }
292    if( n_oriented ){
293    
# Line 305 | Line 296 | void Thermo::velocitize() {
296        if( atoms[i]->isDirectional() ){
297          
298          dAtom = (DirectionalAtom *)atoms[i];
299 +        dAtom->getI( I );
300 +        
301 +        for (j = 0 ; j < 3; j++) {
302  
303 <        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
304 <        jx = vbar * gaussStream->getGaussian();
303 >          vbar = sqrt( 2.0 * kebar * I[j][j] );
304 >          aJ[j] = vbar * gaussStream->getGaussian();
305  
306 <        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
307 <        jy = vbar * gaussStream->getGaussian();
308 <        
309 <        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
316 <        jz = vbar * gaussStream->getGaussian();
317 <        
318 <        dAtom->setJx( jx );
319 <        dAtom->setJy( jy );
320 <        dAtom->setJz( jz );
306 >        }      
307 >
308 >        dAtom->setJ( aJ );
309 >
310        }
311      }  
312    }
# Line 326 | Line 315 | void Thermo::getCOMVel(double vdrift[3]){
315   void Thermo::getCOMVel(double vdrift[3]){
316  
317    double mtot, mtot_local;
318 +  double aVel[3], amass;
319    double vdrift_local[3];
320 <  int vd, n_atoms;
320 >  int vd, n_atoms, j;
321    Atom** atoms;
322  
323    // We are very careless here with the distinction between n_atoms and n_local
324    // We should really fix this before someone pokes an eye out.
325  
326 <  n_atoms = entry_plug->n_atoms;  
327 <  atoms   = entry_plug->atoms;
326 >  n_atoms = info->n_atoms;  
327 >  atoms   = info->atoms;
328  
329    mtot_local = 0.0;
330    vdrift_local[0] = 0.0;
# Line 343 | Line 333 | void Thermo::getCOMVel(double vdrift[3]){
333    
334    for(vd = 0; vd < n_atoms; vd++){
335      
336 <    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
337 <    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
338 <    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
336 >    amass = atoms[vd]->getMass();
337 >    atoms[vd]->getVel( aVel );
338 >
339 >    for(j = 0; j < 3; j++)
340 >      vdrift_local[j] += aVel[j] * amass;
341      
342 <    mtot_local += atoms[vd]->getMass();
342 >    mtot_local += amass;
343    }
344  
345   #ifdef IS_MPI

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines