| 10 |
|
#include "SRI.hpp" |
| 11 |
|
#include "Integrator.hpp" |
| 12 |
|
#include "simError.h" |
| 13 |
+ |
#include "MatVec3.h" |
| 14 |
+ |
#include "ConstraintManager.hpp" |
| 15 |
+ |
#include "Mat3x3d.hpp" |
| 16 |
|
|
| 17 |
|
#ifdef IS_MPI |
| 18 |
|
#define __C |
| 19 |
|
#include "mpiSimulation.hpp" |
| 20 |
|
#endif // is_mpi |
| 21 |
|
|
| 22 |
+ |
inline double roundMe( double x ){ |
| 23 |
+ |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
| 24 |
+ |
} |
| 25 |
+ |
|
| 26 |
|
Thermo::Thermo( SimInfo* the_info ) { |
| 27 |
|
info = the_info; |
| 28 |
|
int baseSeed = the_info->getSeed(); |
| 29 |
|
|
| 30 |
|
gaussStream = new gaussianSPRNG( baseSeed ); |
| 31 |
+ |
|
| 32 |
+ |
cpIter = info->consMan->createPairIterator(); |
| 33 |
|
} |
| 34 |
|
|
| 35 |
|
Thermo::~Thermo(){ |
| 36 |
|
delete gaussStream; |
| 37 |
+ |
delete cpIter; |
| 38 |
|
} |
| 39 |
|
|
| 40 |
|
double Thermo::getKinetic(){ |
| 43 |
|
double kinetic; |
| 44 |
|
double amass; |
| 45 |
|
double aVel[3], aJ[3], I[3][3]; |
| 46 |
< |
int j, kl; |
| 46 |
> |
int i, j, k, kl; |
| 47 |
|
|
| 38 |
– |
DirectionalAtom *dAtom; |
| 39 |
– |
|
| 40 |
– |
int n_atoms; |
| 48 |
|
double kinetic_global; |
| 49 |
< |
Atom** atoms; |
| 43 |
< |
|
| 49 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
| 50 |
|
|
| 45 |
– |
n_atoms = info->n_atoms; |
| 46 |
– |
atoms = info->atoms; |
| 47 |
– |
|
| 51 |
|
kinetic = 0.0; |
| 52 |
|
kinetic_global = 0.0; |
| 50 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
| 51 |
– |
|
| 52 |
– |
atoms[kl]->getVel(aVel); |
| 53 |
– |
amass = atoms[kl]->getMass(); |
| 54 |
– |
|
| 55 |
– |
for (j=0; j < 3; j++) |
| 56 |
– |
kinetic += amass * aVel[j] * aVel[j]; |
| 53 |
|
|
| 54 |
< |
if( atoms[kl]->isDirectional() ){ |
| 55 |
< |
|
| 56 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
| 54 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
| 55 |
> |
integrableObjects[kl]->getVel(aVel); |
| 56 |
> |
amass = integrableObjects[kl]->getMass(); |
| 57 |
|
|
| 58 |
< |
dAtom->getJ( aJ ); |
| 59 |
< |
dAtom->getI( I ); |
| 60 |
< |
|
| 61 |
< |
for (j=0; j<3; j++) |
| 62 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
| 63 |
< |
|
| 64 |
< |
} |
| 58 |
> |
for(j=0; j<3; j++) |
| 59 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
| 60 |
> |
|
| 61 |
> |
if (integrableObjects[kl]->isDirectional()){ |
| 62 |
> |
|
| 63 |
> |
integrableObjects[kl]->getJ( aJ ); |
| 64 |
> |
integrableObjects[kl]->getI( I ); |
| 65 |
> |
|
| 66 |
> |
if (integrableObjects[kl]->isLinear()) { |
| 67 |
> |
i = integrableObjects[kl]->linearAxis(); |
| 68 |
> |
j = (i+1)%3; |
| 69 |
> |
k = (i+2)%3; |
| 70 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
| 71 |
> |
} else { |
| 72 |
> |
for (j=0; j<3; j++) |
| 73 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
| 74 |
> |
} |
| 75 |
> |
} |
| 76 |
|
} |
| 77 |
|
#ifdef IS_MPI |
| 78 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
| 79 |
|
MPI_SUM, MPI_COMM_WORLD); |
| 80 |
|
kinetic = kinetic_global; |
| 81 |
|
#endif //is_mpi |
| 82 |
< |
|
| 82 |
> |
|
| 83 |
|
kinetic = kinetic * 0.5 / e_convert; |
| 84 |
|
|
| 85 |
|
return kinetic; |
| 126 |
|
|
| 127 |
|
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
| 128 |
|
double temperature; |
| 129 |
< |
|
| 129 |
> |
|
| 130 |
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
| 131 |
|
return temperature; |
| 132 |
|
} |
| 207 |
|
double molmass, volume; |
| 208 |
|
double vcom[3]; |
| 209 |
|
double p_local[9], p_global[9]; |
| 210 |
< |
int i, j, k, nMols; |
| 204 |
< |
Molecule* molecules; |
| 210 |
> |
int i, j, k; |
| 211 |
|
|
| 206 |
– |
nMols = info->n_mol; |
| 207 |
– |
molecules = info->molecules; |
| 208 |
– |
//tau = info->tau; |
| 209 |
– |
|
| 210 |
– |
// use velocities of molecular centers of mass and molecular masses: |
| 212 |
|
for (i=0; i < 9; i++) { |
| 213 |
|
p_local[i] = 0.0; |
| 214 |
|
p_global[i] = 0.0; |
| 215 |
|
} |
| 216 |
|
|
| 217 |
< |
for (i=0; i < nMols; i++) { |
| 217 |
< |
molmass = molecules[i].getCOMvel(vcom); |
| 217 |
> |
// use velocities of integrableObjects and their masses: |
| 218 |
|
|
| 219 |
+ |
for (i=0; i < info->integrableObjects.size(); i++) { |
| 220 |
+ |
|
| 221 |
+ |
molmass = info->integrableObjects[i]->getMass(); |
| 222 |
+ |
|
| 223 |
+ |
info->integrableObjects[i]->getVel(vcom); |
| 224 |
+ |
|
| 225 |
|
p_local[0] += molmass * (vcom[0] * vcom[0]); |
| 226 |
|
p_local[1] += molmass * (vcom[0] * vcom[1]); |
| 227 |
|
p_local[2] += molmass * (vcom[0] * vcom[2]); |
| 231 |
|
p_local[6] += molmass * (vcom[2] * vcom[0]); |
| 232 |
|
p_local[7] += molmass * (vcom[2] * vcom[1]); |
| 233 |
|
p_local[8] += molmass * (vcom[2] * vcom[2]); |
| 234 |
+ |
|
| 235 |
|
} |
| 236 |
|
|
| 237 |
|
// Get total for entire system from MPI. |
| 238 |
< |
|
| 238 |
> |
|
| 239 |
|
#ifdef IS_MPI |
| 240 |
|
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
| 241 |
|
#else |
| 246 |
|
|
| 247 |
|
volume = this->getVolume(); |
| 248 |
|
|
| 249 |
+ |
|
| 250 |
+ |
|
| 251 |
|
for(i = 0; i < 3; i++) { |
| 252 |
|
for (j = 0; j < 3; j++) { |
| 253 |
|
k = 3*i + j; |
| 254 |
|
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
| 246 |
– |
|
| 255 |
|
} |
| 256 |
|
} |
| 257 |
|
} |
| 259 |
|
void Thermo::velocitize() { |
| 260 |
|
|
| 261 |
|
double aVel[3], aJ[3], I[3][3]; |
| 262 |
< |
int i, j, vr, vd; // velocity randomizer loop counters |
| 262 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
| 263 |
|
double vdrift[3]; |
| 264 |
|
double vbar; |
| 265 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 266 |
|
double av2; |
| 267 |
|
double kebar; |
| 260 |
– |
int n_atoms; |
| 261 |
– |
Atom** atoms; |
| 262 |
– |
DirectionalAtom* dAtom; |
| 268 |
|
double temperature; |
| 269 |
< |
int n_oriented; |
| 265 |
< |
int n_constraints; |
| 269 |
> |
int nobj; |
| 270 |
|
|
| 271 |
< |
atoms = info->atoms; |
| 272 |
< |
n_atoms = info->n_atoms; |
| 271 |
> |
nobj = info->integrableObjects.size(); |
| 272 |
> |
|
| 273 |
|
temperature = info->target_temp; |
| 270 |
– |
n_oriented = info->n_oriented; |
| 271 |
– |
n_constraints = info->n_constraints; |
| 274 |
|
|
| 275 |
|
kebar = kb * temperature * (double)info->ndfRaw / |
| 276 |
|
( 2.0 * (double)info->ndf ); |
| 277 |
|
|
| 278 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
| 278 |
> |
for(vr = 0; vr < nobj; vr++){ |
| 279 |
|
|
| 280 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
| 281 |
|
|
| 282 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
| 282 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
| 283 |
|
vbar = sqrt( av2 ); |
| 284 |
|
|
| 285 |
|
// picks random velocities from a gaussian distribution |
| 288 |
|
for (j=0; j<3; j++) |
| 289 |
|
aVel[j] = vbar * gaussStream->getGaussian(); |
| 290 |
|
|
| 291 |
< |
atoms[vr]->setVel( aVel ); |
| 291 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
| 292 |
> |
|
| 293 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
| 294 |
|
|
| 295 |
+ |
info->integrableObjects[vr]->getI( I ); |
| 296 |
+ |
|
| 297 |
+ |
if (info->integrableObjects[vr]->isLinear()) { |
| 298 |
+ |
|
| 299 |
+ |
l= info->integrableObjects[vr]->linearAxis(); |
| 300 |
+ |
m = (l+1)%3; |
| 301 |
+ |
n = (l+2)%3; |
| 302 |
+ |
|
| 303 |
+ |
aJ[l] = 0.0; |
| 304 |
+ |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
| 305 |
+ |
aJ[m] = vbar * gaussStream->getGaussian(); |
| 306 |
+ |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
| 307 |
+ |
aJ[n] = vbar * gaussStream->getGaussian(); |
| 308 |
+ |
|
| 309 |
+ |
} else { |
| 310 |
+ |
for (j = 0 ; j < 3; j++) { |
| 311 |
+ |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
| 312 |
+ |
aJ[j] = vbar * gaussStream->getGaussian(); |
| 313 |
+ |
} |
| 314 |
+ |
} // else isLinear |
| 315 |
+ |
|
| 316 |
+ |
info->integrableObjects[vr]->setJ( aJ ); |
| 317 |
+ |
|
| 318 |
+ |
}//isDirectional |
| 319 |
+ |
|
| 320 |
|
} |
| 321 |
|
|
| 322 |
|
// Get the Center of Mass drift velocity. |
| 326 |
|
// Corrects for the center of mass drift. |
| 327 |
|
// sums all the momentum and divides by total mass. |
| 328 |
|
|
| 329 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
| 329 |
> |
for(vd = 0; vd < nobj; vd++){ |
| 330 |
|
|
| 331 |
< |
atoms[vd]->getVel(aVel); |
| 331 |
> |
info->integrableObjects[vd]->getVel(aVel); |
| 332 |
|
|
| 333 |
|
for (j=0; j < 3; j++) |
| 334 |
|
aVel[j] -= vdrift[j]; |
| 335 |
|
|
| 336 |
< |
atoms[vd]->setVel( aVel ); |
| 336 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
| 337 |
|
} |
| 309 |
– |
if( n_oriented ){ |
| 310 |
– |
|
| 311 |
– |
for( i=0; i<n_atoms; i++ ){ |
| 312 |
– |
|
| 313 |
– |
if( atoms[i]->isDirectional() ){ |
| 314 |
– |
|
| 315 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 316 |
– |
dAtom->getI( I ); |
| 317 |
– |
|
| 318 |
– |
for (j = 0 ; j < 3; j++) { |
| 338 |
|
|
| 320 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
| 321 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
| 322 |
– |
|
| 323 |
– |
} |
| 324 |
– |
|
| 325 |
– |
dAtom->setJ( aJ ); |
| 326 |
– |
|
| 327 |
– |
} |
| 328 |
– |
} |
| 329 |
– |
} |
| 339 |
|
} |
| 340 |
|
|
| 341 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
| 343 |
|
double mtot, mtot_local; |
| 344 |
|
double aVel[3], amass; |
| 345 |
|
double vdrift_local[3]; |
| 346 |
< |
int vd, n_atoms, j; |
| 347 |
< |
Atom** atoms; |
| 346 |
> |
int vd, j; |
| 347 |
> |
int nobj; |
| 348 |
|
|
| 349 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
| 341 |
< |
// We should really fix this before someone pokes an eye out. |
| 349 |
> |
nobj = info->integrableObjects.size(); |
| 350 |
|
|
| 343 |
– |
n_atoms = info->n_atoms; |
| 344 |
– |
atoms = info->atoms; |
| 345 |
– |
|
| 351 |
|
mtot_local = 0.0; |
| 352 |
|
vdrift_local[0] = 0.0; |
| 353 |
|
vdrift_local[1] = 0.0; |
| 354 |
|
vdrift_local[2] = 0.0; |
| 355 |
|
|
| 356 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
| 356 |
> |
for(vd = 0; vd < nobj; vd++){ |
| 357 |
|
|
| 358 |
< |
amass = atoms[vd]->getMass(); |
| 359 |
< |
atoms[vd]->getVel( aVel ); |
| 358 |
> |
amass = info->integrableObjects[vd]->getMass(); |
| 359 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
| 360 |
|
|
| 361 |
|
for(j = 0; j < 3; j++) |
| 362 |
|
vdrift_local[j] += aVel[j] * amass; |
| 385 |
|
double mtot, mtot_local; |
| 386 |
|
double aPos[3], amass; |
| 387 |
|
double COM_local[3]; |
| 388 |
< |
int i, n_atoms, j; |
| 389 |
< |
Atom** atoms; |
| 388 |
> |
int i, j; |
| 389 |
> |
int nobj; |
| 390 |
|
|
| 386 |
– |
// We are very careless here with the distinction between n_atoms and n_local |
| 387 |
– |
// We should really fix this before someone pokes an eye out. |
| 388 |
– |
|
| 389 |
– |
n_atoms = info->n_atoms; |
| 390 |
– |
atoms = info->atoms; |
| 391 |
– |
|
| 391 |
|
mtot_local = 0.0; |
| 392 |
|
COM_local[0] = 0.0; |
| 393 |
|
COM_local[1] = 0.0; |
| 394 |
|
COM_local[2] = 0.0; |
| 395 |
< |
|
| 396 |
< |
for(i = 0; i < n_atoms; i++){ |
| 395 |
> |
|
| 396 |
> |
nobj = info->integrableObjects.size(); |
| 397 |
> |
for(i = 0; i < nobj; i++){ |
| 398 |
|
|
| 399 |
< |
amass = atoms[i]->getMass(); |
| 400 |
< |
atoms[i]->getPos( aPos ); |
| 399 |
> |
amass = info->integrableObjects[i]->getMass(); |
| 400 |
> |
info->integrableObjects[i]->getPos( aPos ); |
| 401 |
|
|
| 402 |
|
for(j = 0; j < 3; j++) |
| 403 |
|
COM_local[j] += aPos[j] * amass; |
| 419 |
|
COM[i] = COM[i] / mtot; |
| 420 |
|
} |
| 421 |
|
} |
| 422 |
+ |
|
| 423 |
+ |
void Thermo::removeCOMdrift() { |
| 424 |
+ |
double vdrift[3], aVel[3]; |
| 425 |
+ |
int vd, j, nobj; |
| 426 |
+ |
|
| 427 |
+ |
nobj = info->integrableObjects.size(); |
| 428 |
+ |
|
| 429 |
+ |
// Get the Center of Mass drift velocity. |
| 430 |
+ |
|
| 431 |
+ |
getCOMVel(vdrift); |
| 432 |
+ |
|
| 433 |
+ |
// Corrects for the center of mass drift. |
| 434 |
+ |
// sums all the momentum and divides by total mass. |
| 435 |
+ |
|
| 436 |
+ |
for(vd = 0; vd < nobj; vd++){ |
| 437 |
+ |
|
| 438 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
| 439 |
+ |
|
| 440 |
+ |
for (j=0; j < 3; j++) |
| 441 |
+ |
aVel[j] -= vdrift[j]; |
| 442 |
+ |
|
| 443 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
| 444 |
+ |
} |
| 445 |
+ |
} |
| 446 |
+ |
|
| 447 |
+ |
void Thermo::removeAngularMomentum(){ |
| 448 |
+ |
Vector3d vcom; |
| 449 |
+ |
Vector3d qcom; |
| 450 |
+ |
Vector3d pos; |
| 451 |
+ |
Vector3d vel; |
| 452 |
+ |
double mass; |
| 453 |
+ |
double xx; |
| 454 |
+ |
double yy; |
| 455 |
+ |
double zz; |
| 456 |
+ |
double xy; |
| 457 |
+ |
double xz; |
| 458 |
+ |
double yz; |
| 459 |
+ |
Vector3d localAngMom; |
| 460 |
+ |
Vector3d angMom; |
| 461 |
+ |
Vector3d omega; |
| 462 |
+ |
vector<StuntDouble *> integrableObjects; |
| 463 |
+ |
double localInertiaVec[9]; |
| 464 |
+ |
double inertiaVec[9]; |
| 465 |
+ |
vector<Vector3d> qMinusQCom; |
| 466 |
+ |
vector<Vector3d> vMinusVCom; |
| 467 |
+ |
Mat3x3d inertiaMat; |
| 468 |
+ |
Mat3x3d inverseInertiaMat; |
| 469 |
+ |
|
| 470 |
+ |
integrableObjects = info->integrableObjects; |
| 471 |
+ |
qMinusQCom.resize(integrableObjects.size()); |
| 472 |
+ |
vMinusVCom.resize(integrableObjects.size()); |
| 473 |
+ |
|
| 474 |
+ |
getCOM(qcom.vec); |
| 475 |
+ |
getCOMVel(vcom.vec); |
| 476 |
+ |
|
| 477 |
+ |
//initialize components for inertia tensor |
| 478 |
+ |
xx = 0.0; |
| 479 |
+ |
yy = 0.0; |
| 480 |
+ |
zz = 0.0; |
| 481 |
+ |
xy = 0.0; |
| 482 |
+ |
xz = 0.0; |
| 483 |
+ |
yz = 0.0; |
| 484 |
+ |
|
| 485 |
+ |
//build components of Inertia tensor |
| 486 |
+ |
// |
| 487 |
+ |
// [ Ixx -Ixy -Ixz ] |
| 488 |
+ |
// J = | -Iyx Iyy -Iyz | |
| 489 |
+ |
// [ -Izx -Iyz Izz ] |
| 490 |
+ |
//See Fowles and Cassidy Chapter 9 or Goldstein Chapter 5 |
| 491 |
+ |
for(size_t i = 0; i < integrableObjects.size(); i++){ |
| 492 |
+ |
integrableObjects[i]->getPos(pos.vec); |
| 493 |
+ |
integrableObjects[i]->getVel(vel.vec); |
| 494 |
+ |
mass = integrableObjects[i]->getMass(); |
| 495 |
+ |
|
| 496 |
+ |
qMinusQCom[i] = pos - qcom; |
| 497 |
+ |
info->wrapVector(qMinusQCom[i].vec); |
| 498 |
+ |
|
| 499 |
+ |
vMinusVCom[i] = vel - vcom; |
| 500 |
+ |
|
| 501 |
+ |
//compute moment of inertia coefficents |
| 502 |
+ |
xx += qMinusQCom[i].x * qMinusQCom[i].x * mass; |
| 503 |
+ |
yy += qMinusQCom[i].y * qMinusQCom[i].y * mass; |
| 504 |
+ |
zz += qMinusQCom[i].z * qMinusQCom[i].z * mass; |
| 505 |
+ |
|
| 506 |
+ |
// compute products of inertia |
| 507 |
+ |
xy += qMinusQCom[i].x * qMinusQCom[i].y * mass; |
| 508 |
+ |
xz += qMinusQCom[i].x * qMinusQCom[i].z * mass; |
| 509 |
+ |
yz += qMinusQCom[i].y * qMinusQCom[i].z * mass; |
| 510 |
+ |
|
| 511 |
+ |
localAngMom += crossProduct(qMinusQCom[i] , vMinusVCom[i] ) * mass; |
| 512 |
+ |
|
| 513 |
+ |
} |
| 514 |
+ |
|
| 515 |
+ |
localInertiaVec[0] =yy+zz; |
| 516 |
+ |
localInertiaVec[1] = -xy; |
| 517 |
+ |
localInertiaVec[2] = -xz; |
| 518 |
+ |
localInertiaVec[3] = -xy; |
| 519 |
+ |
localInertiaVec[4] = xx+zz; |
| 520 |
+ |
localInertiaVec[5] = -yz; |
| 521 |
+ |
localInertiaVec[6] = -xz; |
| 522 |
+ |
localInertiaVec[7] = -yz; |
| 523 |
+ |
localInertiaVec[8] = xx+yy; |
| 524 |
+ |
|
| 525 |
+ |
//Sum and distribute inertia and angmom arrays |
| 526 |
+ |
#ifdef MPI |
| 527 |
+ |
|
| 528 |
+ |
MPI_Allreduce(localInertiaVec, inertiaVec, 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
| 529 |
+ |
|
| 530 |
+ |
MPI_Allreduce(localAngMom.vec, angMom.vec, 3, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
| 531 |
+ |
|
| 532 |
+ |
inertiaMat.element[0][0] = inertiaVec[0]; |
| 533 |
+ |
inertiaMat.element[0][1] = inertiaVec[1]; |
| 534 |
+ |
inertiaMat.element[0][2] = inertiaVec[2]; |
| 535 |
+ |
|
| 536 |
+ |
inertiaMat.element[1][0] = inertiaVec[3]; |
| 537 |
+ |
inertiaMat.element[1][1] = inertiaVec[4]; |
| 538 |
+ |
inertiaMat.element[1][2] = inertiaVec[5]; |
| 539 |
+ |
|
| 540 |
+ |
inertiaMat.element[2][0] = inertiaVec[6]; |
| 541 |
+ |
inertiaMat.element[2][1] = inertiaVec[7]; |
| 542 |
+ |
inertiaMat.element[2][2] = inertiaVec[8]; |
| 543 |
+ |
|
| 544 |
+ |
#else |
| 545 |
+ |
|
| 546 |
+ |
inertiaMat.element[0][0] = localInertiaVec[0]; |
| 547 |
+ |
inertiaMat.element[0][1] = localInertiaVec[1]; |
| 548 |
+ |
inertiaMat.element[0][2] = localInertiaVec[2]; |
| 549 |
+ |
|
| 550 |
+ |
inertiaMat.element[1][0] = localInertiaVec[3]; |
| 551 |
+ |
inertiaMat.element[1][1] = localInertiaVec[4]; |
| 552 |
+ |
inertiaMat.element[1][2] = localInertiaVec[5]; |
| 553 |
+ |
|
| 554 |
+ |
inertiaMat.element[2][0] = localInertiaVec[6]; |
| 555 |
+ |
inertiaMat.element[2][1] = localInertiaVec[7]; |
| 556 |
+ |
inertiaMat.element[2][2] = localInertiaVec[8]; |
| 557 |
+ |
|
| 558 |
+ |
angMom = localAngMom; |
| 559 |
+ |
#endif |
| 560 |
+ |
|
| 561 |
+ |
//invert the moment of inertia tensor by LU-decomposition / backsolving: |
| 562 |
+ |
|
| 563 |
+ |
inverseInertiaMat = inertiaMat.inverse(); |
| 564 |
+ |
|
| 565 |
+ |
//calculate the angular velocities: omega = I^-1 . L |
| 566 |
+ |
|
| 567 |
+ |
omega = inverseInertiaMat * angMom; |
| 568 |
+ |
|
| 569 |
+ |
//subtract out center of mass velocity and angular momentum from |
| 570 |
+ |
//particle velocities |
| 571 |
+ |
|
| 572 |
+ |
for(size_t i = 0; i < integrableObjects.size(); i++){ |
| 573 |
+ |
vel = vMinusVCom[i] - crossProduct(omega, qMinusQCom[i]); |
| 574 |
+ |
integrableObjects[i]->setVel(vel.vec); |
| 575 |
+ |
} |
| 576 |
+ |
} |
| 577 |
+ |
|
| 578 |
+ |
double Thermo::getConsEnergy(){ |
| 579 |
+ |
ConstraintPair* consPair; |
| 580 |
+ |
double totConsEnergy; |
| 581 |
+ |
double bondLen2; |
| 582 |
+ |
double dist; |
| 583 |
+ |
double lamda; |
| 584 |
+ |
|
| 585 |
+ |
totConsEnergy = 0; |
| 586 |
+ |
|
| 587 |
+ |
for(cpIter->first(); !cpIter->isEnd(); cpIter->next()){ |
| 588 |
+ |
consPair = cpIter->currentItem(); |
| 589 |
+ |
bondLen2 = consPair->getBondLength2(); |
| 590 |
+ |
lamda = consPair->getLamda(); |
| 591 |
+ |
//dist = consPair->getDistance(); |
| 592 |
+ |
|
| 593 |
+ |
//totConsEnergy += lamda * (dist*dist - bondLen2); |
| 594 |
+ |
} |
| 595 |
+ |
|
| 596 |
+ |
return totConsEnergy; |
| 597 |
+ |
} |
| 598 |
+ |
|
| 599 |
+ |
|