ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 755
Committed: Tue Sep 9 20:35:25 2003 UTC (20 years, 10 months ago) by mmeineke
File size: 8450 byte(s)
Log Message:
updated the ChangeLog

added two new NPT integrators, they still need work.

File Contents

# Content
1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4
5 #ifdef IS_MPI
6 #include <mpi.h>
7 #endif //is_mpi
8
9 #include "Thermo.hpp"
10 #include "SRI.hpp"
11 #include "Integrator.hpp"
12 #include "simError.h"
13
14 #ifdef IS_MPI
15 #define __C
16 #include "mpiSimulation.hpp"
17 #endif // is_mpi
18
19 Thermo::Thermo( SimInfo* the_info ) {
20 info = the_info;
21 int baseSeed = the_info->getSeed();
22
23 gaussStream = new gaussianSPRNG( baseSeed );
24 }
25
26 Thermo::~Thermo(){
27 delete gaussStream;
28 }
29
30 double Thermo::getKinetic(){
31
32 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
33 double kinetic;
34 double amass;
35 double aVel[3], aJ[3], I[3][3];
36 int j, kl;
37
38 DirectionalAtom *dAtom;
39
40 int n_atoms;
41 double kinetic_global;
42 Atom** atoms;
43
44
45 n_atoms = info->n_atoms;
46 atoms = info->atoms;
47
48 kinetic = 0.0;
49 kinetic_global = 0.0;
50 for( kl=0; kl < n_atoms; kl++ ){
51
52 atoms[kl]->getVel(aVel);
53 amass = atoms[kl]->getMass();
54
55 for (j=0; j < 3; j++)
56 kinetic += amass * aVel[j] * aVel[j];
57
58 if( atoms[kl]->isDirectional() ){
59
60 dAtom = (DirectionalAtom *)atoms[kl];
61
62 dAtom->getJ( aJ );
63 dAtom->getI( I );
64
65 for (j=0; j<3; j++)
66 kinetic += aJ[j]*aJ[j] / I[j][j];
67
68 }
69 }
70 #ifdef IS_MPI
71 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
72 MPI_SUM, MPI_COMM_WORLD);
73 kinetic = kinetic_global;
74 #endif //is_mpi
75
76 kinetic = kinetic * 0.5 / e_convert;
77
78 return kinetic;
79 }
80
81 double Thermo::getPotential(){
82
83 double potential_local;
84 double potential;
85 int el, nSRI;
86 Molecule* molecules;
87
88 molecules = info->molecules;
89 nSRI = info->n_SRI;
90
91 potential_local = 0.0;
92 potential = 0.0;
93 potential_local += info->lrPot;
94
95 for( el=0; el<info->n_mol; el++ ){
96 potential_local += molecules[el].getPotential();
97 }
98
99 // Get total potential for entire system from MPI.
100 #ifdef IS_MPI
101 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
102 MPI_SUM, MPI_COMM_WORLD);
103 #else
104 potential = potential_local;
105 #endif // is_mpi
106
107 #ifdef IS_MPI
108 /*
109 std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
110 */
111 #endif
112
113 return potential;
114 }
115
116 double Thermo::getTotalE(){
117
118 double total;
119
120 total = this->getKinetic() + this->getPotential();
121 return total;
122 }
123
124 double Thermo::getTemperature(){
125
126 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
127 double temperature;
128
129 temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
130 return temperature;
131 }
132
133 double Thermo::getEnthalpy() {
134
135 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
136 double u, p, v;
137 double press[3][3];
138
139 u = this->getTotalE();
140
141 this->getPressureTensor(press);
142 p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
143
144 v = this->getVolume();
145
146 return (u + (p*v)/e_convert);
147 }
148
149 double Thermo::getVolume() {
150
151 return info->boxVol;
152 }
153
154 double Thermo::getPressure() {
155
156 // Relies on the calculation of the full molecular pressure tensor
157
158 const double p_convert = 1.63882576e8;
159 double press[3][3];
160 double pressure;
161
162 this->getPressureTensor(press);
163
164 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
165
166 return pressure;
167 }
168
169 double Thermo::getPressureX() {
170
171 // Relies on the calculation of the full molecular pressure tensor
172
173 const double p_convert = 1.63882576e8;
174 double press[3][3];
175 double pressureX;
176
177 this->getPressureTensor(press);
178
179 pressureX = p_convert * press[0][0];
180
181 return pressureX;
182 }
183
184 double Thermo::getPressureY() {
185
186 // Relies on the calculation of the full molecular pressure tensor
187
188 const double p_convert = 1.63882576e8;
189 double press[3][3];
190 double pressureY;
191
192 this->getPressureTensor(press);
193
194 pressureY = p_convert * press[1][1];
195
196 return pressureY;
197 }
198
199 double Thermo::getPressureZ() {
200
201 // Relies on the calculation of the full molecular pressure tensor
202
203 const double p_convert = 1.63882576e8;
204 double press[3][3];
205 double pressureZ;
206
207 this->getPressureTensor(press);
208
209 pressureZ = p_convert * press[2][2];
210
211 return pressureZ;
212 }
213
214
215 void Thermo::getPressureTensor(double press[3][3]){
216 // returns pressure tensor in units amu*fs^-2*Ang^-1
217 // routine derived via viral theorem description in:
218 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
219
220 const double e_convert = 4.184e-4;
221
222 double molmass, volume;
223 double vcom[3];
224 double p_local[9], p_global[9];
225 int i, j, k, nMols;
226 Molecule* molecules;
227
228 nMols = info->n_mol;
229 molecules = info->molecules;
230 //tau = info->tau;
231
232 // use velocities of molecular centers of mass and molecular masses:
233 for (i=0; i < 9; i++) {
234 p_local[i] = 0.0;
235 p_global[i] = 0.0;
236 }
237
238 for (i=0; i < nMols; i++) {
239 molmass = molecules[i].getCOMvel(vcom);
240
241 p_local[0] += molmass * (vcom[0] * vcom[0]);
242 p_local[1] += molmass * (vcom[0] * vcom[1]);
243 p_local[2] += molmass * (vcom[0] * vcom[2]);
244 p_local[3] += molmass * (vcom[1] * vcom[0]);
245 p_local[4] += molmass * (vcom[1] * vcom[1]);
246 p_local[5] += molmass * (vcom[1] * vcom[2]);
247 p_local[6] += molmass * (vcom[2] * vcom[0]);
248 p_local[7] += molmass * (vcom[2] * vcom[1]);
249 p_local[8] += molmass * (vcom[2] * vcom[2]);
250 }
251
252 // Get total for entire system from MPI.
253
254 #ifdef IS_MPI
255 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
256 #else
257 for (i=0; i<9; i++) {
258 p_global[i] = p_local[i];
259 }
260 #endif // is_mpi
261
262 volume = this->getVolume();
263
264 for(i = 0; i < 3; i++) {
265 for (j = 0; j < 3; j++) {
266 k = 3*i + j;
267 press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
268
269 }
270 }
271 }
272
273 void Thermo::velocitize() {
274
275 double x,y;
276 double aVel[3], aJ[3], I[3][3];
277 int i, j, vr, vd; // velocity randomizer loop counters
278 double vdrift[3];
279 double vbar;
280 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
281 double av2;
282 double kebar;
283 int n_atoms;
284 Atom** atoms;
285 DirectionalAtom* dAtom;
286 double temperature;
287 int n_oriented;
288 int n_constraints;
289
290 atoms = info->atoms;
291 n_atoms = info->n_atoms;
292 temperature = info->target_temp;
293 n_oriented = info->n_oriented;
294 n_constraints = info->n_constraints;
295
296 kebar = kb * temperature * (double)info->ndf /
297 ( 2.0 * (double)info->ndfRaw );
298
299 for(vr = 0; vr < n_atoms; vr++){
300
301 // uses equipartition theory to solve for vbar in angstrom/fs
302
303 av2 = 2.0 * kebar / atoms[vr]->getMass();
304 vbar = sqrt( av2 );
305
306 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
307
308 // picks random velocities from a gaussian distribution
309 // centered on vbar
310
311 for (j=0; j<3; j++)
312 aVel[j] = vbar * gaussStream->getGaussian();
313
314 atoms[vr]->setVel( aVel );
315
316 }
317
318 // Get the Center of Mass drift velocity.
319
320 getCOMVel(vdrift);
321
322 // Corrects for the center of mass drift.
323 // sums all the momentum and divides by total mass.
324
325 for(vd = 0; vd < n_atoms; vd++){
326
327 atoms[vd]->getVel(aVel);
328
329 for (j=0; j < 3; j++)
330 aVel[j] -= vdrift[j];
331
332 atoms[vd]->setVel( aVel );
333 }
334 if( n_oriented ){
335
336 for( i=0; i<n_atoms; i++ ){
337
338 if( atoms[i]->isDirectional() ){
339
340 dAtom = (DirectionalAtom *)atoms[i];
341 dAtom->getI( I );
342
343 for (j = 0 ; j < 3; j++) {
344
345 vbar = sqrt( 2.0 * kebar * I[j][j] );
346 aJ[j] = vbar * gaussStream->getGaussian();
347
348 }
349
350 dAtom->setJ( aJ );
351
352 }
353 }
354 }
355 }
356
357 void Thermo::getCOMVel(double vdrift[3]){
358
359 double mtot, mtot_local;
360 double aVel[3], amass;
361 double vdrift_local[3];
362 int vd, n_atoms, j;
363 Atom** atoms;
364
365 // We are very careless here with the distinction between n_atoms and n_local
366 // We should really fix this before someone pokes an eye out.
367
368 n_atoms = info->n_atoms;
369 atoms = info->atoms;
370
371 mtot_local = 0.0;
372 vdrift_local[0] = 0.0;
373 vdrift_local[1] = 0.0;
374 vdrift_local[2] = 0.0;
375
376 for(vd = 0; vd < n_atoms; vd++){
377
378 amass = atoms[vd]->getMass();
379 atoms[vd]->getVel( aVel );
380
381 for(j = 0; j < 3; j++)
382 vdrift_local[j] += aVel[j] * amass;
383
384 mtot_local += amass;
385 }
386
387 #ifdef IS_MPI
388 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
389 MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
390 #else
391 mtot = mtot_local;
392 for(vd = 0; vd < 3; vd++) {
393 vdrift[vd] = vdrift_local[vd];
394 }
395 #endif
396
397 for (vd = 0; vd < 3; vd++) {
398 vdrift[vd] = vdrift[vd] / mtot;
399 }
400
401 }
402