ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
Revision: 588
Committed: Thu Jul 10 17:10:56 2003 UTC (21 years ago) by gezelter
File size: 8409 byte(s)
Log Message:
Bunch of 1-d array -> 2-d array stuff

File Contents

# Content
1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4
5 #ifdef IS_MPI
6 #include <mpi.h>
7 #endif //is_mpi
8
9 #include "Thermo.hpp"
10 #include "SRI.hpp"
11 #include "Integrator.hpp"
12 #include "simError.h"
13
14 #ifdef IS_MPI
15 #define __C
16 #include "mpiSimulation.hpp"
17 #endif // is_mpi
18
19
20 #define BASE_SEED 123456789
21
22 Thermo::Thermo( SimInfo* the_entry_plug ) {
23 entry_plug = the_entry_plug;
24 int baseSeed = BASE_SEED;
25
26 gaussStream = new gaussianSPRNG( baseSeed );
27 }
28
29 Thermo::~Thermo(){
30 delete gaussStream;
31 }
32
33 double Thermo::getKinetic(){
34
35 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
36 double vx2, vy2, vz2;
37 double kinetic, v_sqr;
38 int kl;
39 double jx2, jy2, jz2; // the square of the angular momentums
40
41 DirectionalAtom *dAtom;
42
43 int n_atoms;
44 double kinetic_global;
45 Atom** atoms;
46
47
48 n_atoms = entry_plug->n_atoms;
49 atoms = entry_plug->atoms;
50
51 kinetic = 0.0;
52 kinetic_global = 0.0;
53 for( kl=0; kl < n_atoms; kl++ ){
54
55 vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx();
56 vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy();
57 vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz();
58
59 v_sqr = vx2 + vy2 + vz2;
60 kinetic += atoms[kl]->getMass() * v_sqr;
61
62 if( atoms[kl]->isDirectional() ){
63
64 dAtom = (DirectionalAtom *)atoms[kl];
65
66 jx2 = dAtom->getJx() * dAtom->getJx();
67 jy2 = dAtom->getJy() * dAtom->getJy();
68 jz2 = dAtom->getJz() * dAtom->getJz();
69
70 kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())
71 + (jz2 / dAtom->getIzz());
72 }
73 }
74 #ifdef IS_MPI
75 MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
76 MPI_SUM, MPI_COMM_WORLD);
77 kinetic = kinetic_global;
78 #endif //is_mpi
79
80 kinetic = kinetic * 0.5 / e_convert;
81
82 return kinetic;
83 }
84
85 double Thermo::getPotential(){
86
87 double potential_local;
88 double potential;
89 int el, nSRI;
90 Molecule* molecules;
91
92 molecules = entry_plug->molecules;
93 nSRI = entry_plug->n_SRI;
94
95 potential_local = 0.0;
96 potential = 0.0;
97 potential_local += entry_plug->lrPot;
98
99 for( el=0; el<entry_plug->n_mol; el++ ){
100 potential_local += molecules[el].getPotential();
101 }
102
103 // Get total potential for entire system from MPI.
104 #ifdef IS_MPI
105 MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
106 MPI_SUM, MPI_COMM_WORLD);
107 #else
108 potential = potential_local;
109 #endif // is_mpi
110
111 #ifdef IS_MPI
112 /*
113 std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
114 */
115 #endif
116
117 return potential;
118 }
119
120 double Thermo::getTotalE(){
121
122 double total;
123
124 total = this->getKinetic() + this->getPotential();
125 return total;
126 }
127
128 double Thermo::getTemperature(){
129
130 const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
131 double temperature;
132
133 temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
134 return temperature;
135 }
136
137 double Thermo::getEnthalpy() {
138
139 const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
140 double u, p, v;
141 double press[3][3];
142
143 u = this->getTotalE();
144
145 this->getPressureTensor(press);
146 p = (press[0][0] + press[1][1] + press[2][2]) / 3.0;
147
148 v = this->getVolume();
149
150 return (u + (p*v)/e_convert);
151 }
152
153 double Thermo::getVolume() {
154
155 return entry_plug->boxVol;
156 }
157
158 double Thermo::getPressure() {
159
160 // Relies on the calculation of the full molecular pressure tensor
161
162 const double p_convert = 1.63882576e8;
163 double press[3][3];
164 double pressure;
165
166 this->getPressureTensor(press);
167
168 pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
169
170 return pressure;
171 }
172
173
174 void Thermo::getPressureTensor(double press[3][3]){
175 // returns pressure tensor in units amu*fs^-2*Ang^-1
176 // routine derived via viral theorem description in:
177 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
178
179 const double e_convert = 4.184e-4;
180
181 double molmass, volume;
182 double vcom[3];
183 double p_local[9], p_global[9];
184 int i, j, k, nMols;
185 Molecule* molecules;
186
187 nMols = entry_plug->n_mol;
188 molecules = entry_plug->molecules;
189 //tau = entry_plug->tau;
190
191 // use velocities of molecular centers of mass and molecular masses:
192 for (i=0; i < 9; i++) {
193 p_local[i] = 0.0;
194 p_global[i] = 0.0;
195 }
196
197 for (i=0; i < nMols; i++) {
198 molmass = molecules[i].getCOMvel(vcom);
199
200 p_local[0] += molmass * (vcom[0] * vcom[0]);
201 p_local[1] += molmass * (vcom[0] * vcom[1]);
202 p_local[2] += molmass * (vcom[0] * vcom[2]);
203 p_local[3] += molmass * (vcom[1] * vcom[0]);
204 p_local[4] += molmass * (vcom[1] * vcom[1]);
205 p_local[5] += molmass * (vcom[1] * vcom[2]);
206 p_local[6] += molmass * (vcom[2] * vcom[0]);
207 p_local[7] += molmass * (vcom[2] * vcom[1]);
208 p_local[8] += molmass * (vcom[2] * vcom[2]);
209 }
210
211 // Get total for entire system from MPI.
212
213 #ifdef IS_MPI
214 MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
215 #else
216 for (i=0; i<9; i++) {
217 p_global[i] = p_local[i];
218 }
219 #endif // is_mpi
220
221 volume = entry_plug->boxVol;
222
223 for(i = 0; i < 3; i++) {
224 for (j = 0; j < 3; j++) {
225 k = 3*i + j;
226 press[i][j] = (p_global[k] - entry_plug->tau[k]*e_convert) / volume;
227 }
228 }
229 }
230
231 void Thermo::velocitize() {
232
233 double x,y;
234 double vx, vy, vz;
235 double jx, jy, jz;
236 int i, vr, vd; // velocity randomizer loop counters
237 double vdrift[3];
238 double vbar;
239 const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
240 double av2;
241 double kebar;
242 int n_atoms;
243 Atom** atoms;
244 DirectionalAtom* dAtom;
245 double temperature;
246 int n_oriented;
247 int n_constraints;
248
249 atoms = entry_plug->atoms;
250 n_atoms = entry_plug->n_atoms;
251 temperature = entry_plug->target_temp;
252 n_oriented = entry_plug->n_oriented;
253 n_constraints = entry_plug->n_constraints;
254
255 kebar = kb * temperature * (double)entry_plug->ndf /
256 ( 2.0 * (double)entry_plug->ndfRaw );
257
258 for(vr = 0; vr < n_atoms; vr++){
259
260 // uses equipartition theory to solve for vbar in angstrom/fs
261
262 av2 = 2.0 * kebar / atoms[vr]->getMass();
263 vbar = sqrt( av2 );
264
265 // vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
266
267 // picks random velocities from a gaussian distribution
268 // centered on vbar
269
270 vx = vbar * gaussStream->getGaussian();
271 vy = vbar * gaussStream->getGaussian();
272 vz = vbar * gaussStream->getGaussian();
273
274 atoms[vr]->set_vx( vx );
275 atoms[vr]->set_vy( vy );
276 atoms[vr]->set_vz( vz );
277 }
278
279 // Get the Center of Mass drift velocity.
280
281 getCOMVel(vdrift);
282
283 // Corrects for the center of mass drift.
284 // sums all the momentum and divides by total mass.
285
286 for(vd = 0; vd < n_atoms; vd++){
287
288 vx = atoms[vd]->get_vx();
289 vy = atoms[vd]->get_vy();
290 vz = atoms[vd]->get_vz();
291
292 vx -= vdrift[0];
293 vy -= vdrift[1];
294 vz -= vdrift[2];
295
296 atoms[vd]->set_vx(vx);
297 atoms[vd]->set_vy(vy);
298 atoms[vd]->set_vz(vz);
299 }
300 if( n_oriented ){
301
302 for( i=0; i<n_atoms; i++ ){
303
304 if( atoms[i]->isDirectional() ){
305
306 dAtom = (DirectionalAtom *)atoms[i];
307
308 vbar = sqrt( 2.0 * kebar * dAtom->getIxx() );
309 jx = vbar * gaussStream->getGaussian();
310
311 vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
312 jy = vbar * gaussStream->getGaussian();
313
314 vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
315 jz = vbar * gaussStream->getGaussian();
316
317 dAtom->setJx( jx );
318 dAtom->setJy( jy );
319 dAtom->setJz( jz );
320 }
321 }
322 }
323 }
324
325 void Thermo::getCOMVel(double vdrift[3]){
326
327 double mtot, mtot_local;
328 double vdrift_local[3];
329 int vd, n_atoms;
330 Atom** atoms;
331
332 // We are very careless here with the distinction between n_atoms and n_local
333 // We should really fix this before someone pokes an eye out.
334
335 n_atoms = entry_plug->n_atoms;
336 atoms = entry_plug->atoms;
337
338 mtot_local = 0.0;
339 vdrift_local[0] = 0.0;
340 vdrift_local[1] = 0.0;
341 vdrift_local[2] = 0.0;
342
343 for(vd = 0; vd < n_atoms; vd++){
344
345 vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
346 vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
347 vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
348
349 mtot_local += atoms[vd]->getMass();
350 }
351
352 #ifdef IS_MPI
353 MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
354 MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
355 #else
356 mtot = mtot_local;
357 for(vd = 0; vd < 3; vd++) {
358 vdrift[vd] = vdrift_local[vd];
359 }
360 #endif
361
362 for (vd = 0; vd < 3; vd++) {
363 vdrift[vd] = vdrift[vd] / mtot;
364 }
365
366 }
367