ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Thermo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Thermo.cpp (file contents):
Revision 378 by mmeineke, Fri Mar 21 17:42:12 2003 UTC vs.
Revision 582 by mmeineke, Wed Jul 9 15:33:46 2003 UTC

# Line 4 | Line 4 | using namespace std;
4  
5   #ifdef IS_MPI
6   #include <mpi.h>
7 #include <mpi++.h>
7   #endif //is_mpi
8  
9   #include "Thermo.hpp"
10   #include "SRI.hpp"
11   #include "Integrator.hpp"
12 + #include "simError.h"
13  
14 + #ifdef IS_MPI
15 + #define __C
16 + #include "mpiSimulation.hpp"
17 + #endif // is_mpi
18 +
19 +
20   #define BASE_SEED 123456789
21  
22   Thermo::Thermo( SimInfo* the_entry_plug ) {
# Line 66 | Line 72 | double Thermo::getKinetic(){
72      }
73    }
74   #ifdef IS_MPI
75 <  MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM);
75 >  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
76 >                MPI_SUM, MPI_COMM_WORLD);
77    kinetic = kinetic_global;
78   #endif //is_mpi
79  
# Line 77 | Line 84 | double Thermo::getPotential(){
84  
85   double Thermo::getPotential(){
86    
87 +  double potential_local;
88    double potential;
81  double potential_global;
89    int el, nSRI;
90 <  SRI** sris;
90 >  Molecule* molecules;
91  
92 <  sris = entry_plug->sr_interactions;
92 >  molecules = entry_plug->molecules;
93    nSRI = entry_plug->n_SRI;
94  
95 +  potential_local = 0.0;
96    potential = 0.0;
97 <  potential_global = 0.0;
90 <  potential += entry_plug->lrPot;
97 >  potential_local += entry_plug->lrPot;
98  
99 <  for( el=0; el<nSRI; el++ ){
100 <    
94 <    potential += sris[el]->get_potential();
99 >  for( el=0; el<entry_plug->n_mol; el++ ){    
100 >    potential_local += molecules[el].getPotential();
101    }
102  
103    // Get total potential for entire system from MPI.
104   #ifdef IS_MPI
105 <  MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM);
106 <  potential = potential_global;
107 <
105 >  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
106 >                MPI_SUM, MPI_COMM_WORLD);
107 > #else
108 >  potential = potential_local;
109   #endif // is_mpi
110  
111 + #ifdef IS_MPI
112 +  /*
113 +  std::cerr << "node " << worldRank << ": after pot = " << potential << "\n";
114 +  */
115 + #endif
116 +
117    return potential;
118   }
119  
# Line 117 | Line 130 | double Thermo::getTemperature(){
130    const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K)
131    double temperature;
132    
133 <  int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented
121 <    - entry_plug->n_constraints - 3;
122 <
123 <  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb );
133 >  temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb );
134    return temperature;
135   }
136  
137 < double Thermo::getPressure(){
137 > double Thermo::getEnthalpy() {
138  
139 < //  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm
140 < // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa
141 < //  const double conv_A_m = 1.0E-10; //convert A -> m
139 >  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
140 >  double u, p, v;
141 >  double press[9];
142  
143 <  return 0.0;
143 >  u = this->getTotalE();
144 >
145 >  this->getPressureTensor(press);
146 >  p = (press[0] + press[4] + press[8]) / 3.0;
147 >
148 >  v = this->getVolume();
149 >
150 >  return (u + (p*v)/e_convert);
151 > }
152 >
153 > double Thermo::getVolume() {
154 >
155 >  return entry_plug->boxVol;
156 > }
157 >
158 > double Thermo::getPressure() {
159 >
160 >  // Relies on the calculation of the full molecular pressure tensor
161 >  
162 >  const double p_convert = 1.63882576e8;
163 >  double press[9];
164 >  double pressure;
165 >
166 >  this->getPressureTensor(press);
167 >
168 >  pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0;
169 >
170 >  return pressure;
171 > }
172 >
173 >
174 > void Thermo::getPressureTensor(double press[9]){
175 >  // returns pressure tensor in units amu*fs^-2*Ang^-1
176 >  // routine derived via viral theorem description in:
177 >  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
178 >
179 >  const double e_convert = 4.184e-4;
180 >
181 >  double molmass, volume;
182 >  double vcom[3];
183 >  double p_local[9], p_global[9];
184 >  double theBox[3];
185 >  //double* tau;
186 >  int i, nMols;
187 >  Molecule* molecules;
188 >
189 >  nMols = entry_plug->n_mol;
190 >  molecules = entry_plug->molecules;
191 >  //tau = entry_plug->tau;
192 >
193 >  // use velocities of molecular centers of mass and molecular masses:
194 >  for (i=0; i < 9; i++) {    
195 >    p_local[i] = 0.0;
196 >    p_global[i] = 0.0;
197 >  }
198 >
199 >  for (i=0; i < nMols; i++) {
200 >    molmass = molecules[i].getCOMvel(vcom);
201 >
202 >    p_local[0] += molmass * (vcom[0] * vcom[0]);
203 >    p_local[1] += molmass * (vcom[0] * vcom[1]);
204 >    p_local[2] += molmass * (vcom[0] * vcom[2]);
205 >    p_local[3] += molmass * (vcom[1] * vcom[0]);
206 >    p_local[4] += molmass * (vcom[1] * vcom[1]);
207 >    p_local[5] += molmass * (vcom[1] * vcom[2]);
208 >    p_local[6] += molmass * (vcom[2] * vcom[0]);
209 >    p_local[7] += molmass * (vcom[2] * vcom[1]);
210 >    p_local[8] += molmass * (vcom[2] * vcom[2]);
211 >  }
212 >
213 >  // Get total for entire system from MPI.
214 >
215 > #ifdef IS_MPI
216 >  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
217 > #else
218 >  for (i=0; i<9; i++) {
219 >    p_global[i] = p_local[i];
220 >  }
221 > #endif // is_mpi
222 >
223 >  volume = entry_plug->boxVol;
224 >
225 >  for(i=0; i<9; i++) {
226 >    press[i] = (p_global[i] - entry_plug->tau[i]*e_convert) / volume;
227 >  }
228   }
229  
230   void Thermo::velocitize() {
# Line 140 | Line 234 | void Thermo::velocitize() {
234    double jx, jy, jz;
235    int i, vr, vd; // velocity randomizer loop counters
236    double vdrift[3];
143  double mtot = 0.0;
237    double vbar;
238    const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
239    double av2;
240    double kebar;
148  int ndf; // number of degrees of freedom
149  int ndfRaw; // the raw number of degrees of freedom
241    int n_atoms;
242    Atom** atoms;
243    DirectionalAtom* dAtom;
# Line 160 | Line 251 | void Thermo::velocitize() {
251    n_oriented    = entry_plug->n_oriented;
252    n_constraints = entry_plug->n_constraints;
253    
254 <
255 <  ndfRaw = 3 * n_atoms + 3 * n_oriented;
165 <  ndf = ndfRaw - n_constraints - 3;
166 <  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw );
254 >  kebar = kb * temperature * (double)entry_plug->ndf /
255 >    ( 2.0 * (double)entry_plug->ndfRaw );
256    
257    for(vr = 0; vr < n_atoms; vr++){
258      
# Line 171 | Line 260 | void Thermo::velocitize() {
260  
261      av2 = 2.0 * kebar / atoms[vr]->getMass();
262      vbar = sqrt( av2 );
263 <
263 >
264   //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() );
265      
266      // picks random velocities from a gaussian distribution
# Line 185 | Line 274 | void Thermo::velocitize() {
274      atoms[vr]->set_vy( vy );
275      atoms[vr]->set_vz( vz );
276    }
277 +
278 +  // Get the Center of Mass drift velocity.
279 +
280 +  getCOMVel(vdrift);
281    
282    //  Corrects for the center of mass drift.
283    // sums all the momentum and divides by total mass.
191  
192  mtot = 0.0;
193  vdrift[0] = 0.0;
194  vdrift[1] = 0.0;
195  vdrift[2] = 0.0;
196  for(vd = 0; vd < n_atoms; vd++){
197    
198    vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
199    vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
200    vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
201    
202    mtot += atoms[vd]->getMass();
203  }
204  
205  for (vd = 0; vd < 3; vd++) {
206    vdrift[vd] = vdrift[vd] / mtot;
207  }
208  
284  
285    for(vd = 0; vd < n_atoms; vd++){
286      
287      vx = atoms[vd]->get_vx();
288      vy = atoms[vd]->get_vy();
289      vz = atoms[vd]->get_vz();
290 <    
216 <    
290 >        
291      vx -= vdrift[0];
292      vy -= vdrift[1];
293      vz -= vdrift[2];
# Line 235 | Line 309 | void Thermo::velocitize() {
309  
310          vbar = sqrt( 2.0 * kebar * dAtom->getIyy() );
311          jy = vbar * gaussStream->getGaussian();
312 <
312 >        
313          vbar = sqrt( 2.0 * kebar * dAtom->getIzz() );
314          jz = vbar * gaussStream->getGaussian();
315          
# Line 246 | Line 320 | void Thermo::velocitize() {
320      }  
321    }
322   }
323 +
324 + void Thermo::getCOMVel(double vdrift[3]){
325 +
326 +  double mtot, mtot_local;
327 +  double vdrift_local[3];
328 +  int vd, n_atoms;
329 +  Atom** atoms;
330 +
331 +  // We are very careless here with the distinction between n_atoms and n_local
332 +  // We should really fix this before someone pokes an eye out.
333 +
334 +  n_atoms = entry_plug->n_atoms;  
335 +  atoms   = entry_plug->atoms;
336 +
337 +  mtot_local = 0.0;
338 +  vdrift_local[0] = 0.0;
339 +  vdrift_local[1] = 0.0;
340 +  vdrift_local[2] = 0.0;
341 +  
342 +  for(vd = 0; vd < n_atoms; vd++){
343 +    
344 +    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass();
345 +    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass();
346 +    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass();
347 +    
348 +    mtot_local += atoms[vd]->getMass();
349 +  }
350 +
351 + #ifdef IS_MPI
352 +  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
353 +  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
354 + #else
355 +  mtot = mtot_local;
356 +  for(vd = 0; vd < 3; vd++) {
357 +    vdrift[vd] = vdrift_local[vd];
358 +  }
359 + #endif
360 +    
361 +  for (vd = 0; vd < 3; vd++) {
362 +    vdrift[vd] = vdrift[vd] / mtot;
363 +  }
364 +  
365 + }
366 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines