ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Verlet.cpp
Revision: 483
Committed: Wed Apr 9 04:06:43 2003 UTC (21 years, 3 months ago) by gezelter
File size: 11273 byte(s)
Log Message:
fixes for NPT and NVT

File Contents

# User Rev Content
1 mmeineke 377 #include <iostream>
2     #include <stdlib.h>
3    
4     #include "Atom.hpp"
5     #include "SRI.hpp"
6     #include "Integrator.hpp"
7     #include "SimInfo.hpp"
8     #include "Thermo.hpp"
9     #include "ReadWrite.hpp"
10 gezelter 466 #include "ExtendedSystem.hpp"
11 mmeineke 377
12     extern "C"{
13    
14     void v_constrain_a_( double &dt, int &n_atoms, double* mass,
15     double* Rx, double* Ry, double* Rz,
16     double* Vx, double* Vy, double* Vz,
17     double* Fx, double* Fy, double* Fz,
18     int &n_constrained, double *constr_sqr,
19     int* constr_i, int* constr_j,
20     double &box_x, double &box_y, double &box_z );
21    
22     void v_constrain_b_( double &dt, int &n_atoms, double* mass,
23     double* Rx, double* Ry, double* Rz,
24     double* Vx, double* Vy, double* Vz,
25     double* Fx, double* Fy, double* Fz,
26     double &Kinetic,
27     int &n_constrained, double *constr_sqr,
28     int* constr_i, int* constr_j,
29     double &box_x, double &box_y, double &box_z );
30     }
31    
32    
33 gezelter 466 Verlet::Verlet( SimInfo &info, ForceFields* the_ff, ExtendedSystem* the_es ){
34 mmeineke 377
35     // get what information we need from the SimInfo object
36    
37     entry_plug = &info;
38     myFF = the_ff;
39 gezelter 466 myES = the_es;
40 mmeineke 423
41 mmeineke 377 c_natoms = info.n_atoms;
42     c_atoms = info.atoms;
43 mmeineke 423 nMols = info.n_mol;
44     molecules = info.molecules;
45 mmeineke 377 c_is_constrained = 0;
46     c_box_x = info.box_x;
47     c_box_y = info.box_y;
48     c_box_z = info.box_z;
49    
50     // give a little love back to the SimInfo object
51    
52     if( info.the_integrator != NULL ) delete info.the_integrator;
53     info.the_integrator = this;
54    
55     // the rest are initialization issues
56    
57     is_first = 1; // let the integrate method know when the first call is
58    
59     // mass array setup
60    
61     c_mass = new double[c_natoms];
62    
63     for(int i = 0; i < c_natoms; i++){
64     c_mass[i] = c_atoms[i]->getMass();
65     }
66    
67     // check for constraints
68    
69     Constraint *temp_con;
70     Constraint *dummy_plug;
71 mmeineke 423 temp_con = new Constraint[info.n_SRI];
72 mmeineke 377
73     c_n_constrained = 0;
74     int constrained = 0;
75 mmeineke 423 SRI** theArray;
76     for(int i = 0; i < nMols; i++){
77 mmeineke 377
78 mmeineke 428 theArray = (SRI**) molecules[i].getMyBonds();
79     for(int j=0; j<molecules[i].getNBonds(); j++){
80 mmeineke 423
81     constrained = theArray[j]->is_constrained();
82    
83     if(constrained){
84    
85     dummy_plug = theArray[j]->get_constraint();
86     temp_con[c_n_constrained].set_a( dummy_plug->get_a() );
87     temp_con[c_n_constrained].set_b( dummy_plug->get_b() );
88     temp_con[c_n_constrained].set_dsqr( dummy_plug->get_dsqr() );
89    
90     c_n_constrained++;
91     constrained = 0;
92     }
93     }
94 mmeineke 377
95 mmeineke 428 theArray = (SRI**) molecules[i].getMyBends();
96     for(int j=0; j<molecules[i].getNBends(); j++){
97 mmeineke 377
98 mmeineke 423 constrained = theArray[j]->is_constrained();
99    
100     if(constrained){
101    
102     dummy_plug = theArray[j]->get_constraint();
103     temp_con[c_n_constrained].set_a( dummy_plug->get_a() );
104     temp_con[c_n_constrained].set_b( dummy_plug->get_b() );
105     temp_con[c_n_constrained].set_dsqr( dummy_plug->get_dsqr() );
106    
107     c_n_constrained++;
108     constrained = 0;
109     }
110     }
111 mmeineke 377
112 mmeineke 428 theArray = (SRI**) molecules[i].getMyTorsions();
113     for(int j=0; j<molecules[i].getNTorsions(); j++){
114 mmeineke 423
115     constrained = theArray[j]->is_constrained();
116    
117     if(constrained){
118    
119     dummy_plug = theArray[j]->get_constraint();
120     temp_con[c_n_constrained].set_a( dummy_plug->get_a() );
121     temp_con[c_n_constrained].set_b( dummy_plug->get_b() );
122     temp_con[c_n_constrained].set_dsqr( dummy_plug->get_dsqr() );
123    
124     c_n_constrained++;
125     constrained = 0;
126     }
127 mmeineke 377 }
128 mmeineke 423
129    
130 mmeineke 377 }
131    
132     if(c_n_constrained > 0){
133    
134     c_is_constrained = 1;
135     c_constrained_i = new int[c_n_constrained];
136     c_constrained_j = new int[c_n_constrained];
137     c_constrained_dsqr = new double[c_n_constrained];
138 mmeineke 423
139 mmeineke 377 for( int i = 0; i < c_n_constrained; i++){
140    
141     /* add 1 to the index for the fortran arrays. */
142 mmeineke 423
143 mmeineke 377 c_constrained_i[i] = temp_con[i].get_a() + 1;
144     c_constrained_j[i] = temp_con[i].get_b() + 1;
145     c_constrained_dsqr[i] = temp_con[i].get_dsqr();
146     }
147     }
148    
149     delete[] temp_con;
150     }
151    
152    
153     Verlet::~Verlet(){
154    
155     if( c_is_constrained ){
156    
157     delete[] c_constrained_i;
158     delete[] c_constrained_j;
159     delete[] c_constrained_dsqr;
160     }
161    
162     delete[] c_mass;
163     c_mass = 0;
164     }
165    
166    
167     void Verlet::integrate( void ){
168    
169     int i, j; /* loop counters */
170 gezelter 468 int calcPot, calcStress;
171 mmeineke 377
172     double kE;
173    
174     double *Rx = new double[c_natoms];
175     double *Ry = new double[c_natoms];
176     double *Rz = new double[c_natoms];
177    
178     double *Vx = new double[c_natoms];
179     double *Vy = new double[c_natoms];
180     double *Vz = new double[c_natoms];
181    
182     double *Fx = new double[c_natoms];
183     double *Fy = new double[c_natoms];
184     double *Fz = new double[c_natoms];
185    
186     int time;
187    
188 gezelter 483 double press[9];
189    
190 mmeineke 377 double dt = entry_plug->dt;
191     double runTime = entry_plug->run_time;
192     double sampleTime = entry_plug->sampleTime;
193     double statusTime = entry_plug->statusTime;
194     double thermalTime = entry_plug->thermalTime;
195    
196     int n_loops = (int)( runTime / dt );
197     int sample_n = (int)( sampleTime / dt );
198     int status_n = (int)( statusTime / dt );
199     int vel_n = (int)( thermalTime / dt );
200    
201     Thermo *tStats = new Thermo( entry_plug );
202    
203     StatWriter* e_out = new StatWriter( entry_plug );
204     DumpWriter* dump_out = new DumpWriter( entry_plug );
205    
206     // the first time integrate is called, the forces need to be initialized
207    
208 gezelter 468 myFF->doForces(1,1);
209 mmeineke 377
210     if( entry_plug->setTemp ){
211     tStats->velocitize();
212     }
213    
214     dump_out->writeDump( 0.0 );
215    
216     e_out->writeStat( 0.0 );
217    
218     calcPot = 0;
219    
220 gezelter 475 if (!strcasecmp( entry_plug->ensemble, "NPT")) {
221     calcStress = 1;
222     } else {
223     calcStress = 0;
224     }
225    
226 mmeineke 377 if( c_is_constrained ){
227     for(i = 0; i < n_loops; i++){
228    
229 gezelter 471 if (!strcasecmp( entry_plug->ensemble, "NVT"))
230 gezelter 477 myES->NoseHooverNVT( dt / 2.0 , tStats->getKinetic() );
231    
232 mmeineke 377 // fill R, V, and F arrays and RATTLE in fortran
233 gezelter 477
234 mmeineke 377 for( j=0; j<c_natoms; j++ ){
235 gezelter 477
236 mmeineke 377 Rx[j] = c_atoms[j]->getX();
237     Ry[j] = c_atoms[j]->getY();
238     Rz[j] = c_atoms[j]->getZ();
239    
240     Vx[j] = c_atoms[j]->get_vx();
241     Vy[j] = c_atoms[j]->get_vy();
242     Vz[j] = c_atoms[j]->get_vz();
243    
244     Fx[j] = c_atoms[j]->getFx();
245     Fy[j] = c_atoms[j]->getFy();
246     Fz[j] = c_atoms[j]->getFz();
247    
248     }
249    
250     v_constrain_a_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz,
251     Fx, Fy, Fz,
252     c_n_constrained, c_constrained_dsqr,
253     c_constrained_i, c_constrained_j,
254     c_box_x, c_box_y, c_box_z );
255    
256     for( j=0; j<c_natoms; j++ ){
257    
258     c_atoms[j]->setX(Rx[j]);
259     c_atoms[j]->setY(Ry[j]);
260     c_atoms[j]->setZ(Rz[j]);
261    
262     c_atoms[j]->set_vx(Vx[j]);
263     c_atoms[j]->set_vy(Vy[j]);
264     c_atoms[j]->set_vz(Vz[j]);
265     }
266    
267     // calculate the forces
268    
269 gezelter 468 myFF->doForces(calcPot,calcStress);
270 mmeineke 377
271     // finish the constrain move ( same as above. )
272    
273     for( j=0; j<c_natoms; j++ ){
274    
275     Rx[j] = c_atoms[j]->getX();
276     Ry[j] = c_atoms[j]->getY();
277     Rz[j] = c_atoms[j]->getZ();
278    
279     Vx[j] = c_atoms[j]->get_vx();
280     Vy[j] = c_atoms[j]->get_vy();
281     Vz[j] = c_atoms[j]->get_vz();
282    
283     Fx[j] = c_atoms[j]->getFx();
284     Fy[j] = c_atoms[j]->getFy();
285     Fz[j] = c_atoms[j]->getFz();
286     }
287    
288 gezelter 471
289 mmeineke 377 v_constrain_b_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz,
290     Fx, Fy, Fz,
291     kE, c_n_constrained, c_constrained_dsqr,
292     c_constrained_i, c_constrained_j,
293     c_box_x, c_box_y, c_box_z );
294    
295     for( j=0; j<c_natoms; j++ ){
296    
297     c_atoms[j]->setX(Rx[j]);
298     c_atoms[j]->setY(Ry[j]);
299     c_atoms[j]->setZ(Rz[j]);
300    
301     c_atoms[j]->set_vx(Vx[j]);
302     c_atoms[j]->set_vy(Vy[j]);
303     c_atoms[j]->set_vz(Vz[j]);
304     }
305    
306 gezelter 471 if (!strcasecmp( entry_plug->ensemble, "NVT"))
307 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
308    
309 gezelter 483 if (!strcasecmp( entry_plug->ensemble, "NPT") ) {
310     tStats->getPressureTensor(press);
311 gezelter 471 myES->NoseHooverAndersonNPT( dt,
312     tStats->getKinetic(),
313 gezelter 483 press);
314     }
315 gezelter 471
316 mmeineke 377 time = i + 1;
317    
318     if( entry_plug->setTemp ){
319     if( !(time % vel_n) ) tStats->velocitize();
320     }
321     if( !(time % sample_n) ) dump_out->writeDump( time * dt );
322 chuckv 479
323 gezelter 468 if( !((time+1) % status_n) ) {
324     calcPot = 1;
325 chuckv 479 calcStress = 1;
326 gezelter 468 }
327     if( !(time % status_n) ){
328     e_out->writeStat( time * dt );
329     calcPot = 0;
330 chuckv 479 if (!strcasecmp(entry_plug->ensemble, "NPT")) calcStress = 1;
331     else calcStress = 0;
332 gezelter 468 }
333 mmeineke 377 }
334     }
335     else{
336     for(i = 0; i < n_loops; i++){
337 gezelter 471
338     if (!strcasecmp( entry_plug->ensemble, "NVT"))
339 gezelter 477 myES->NoseHooverNVT( dt / 2.0, tStats->getKinetic() );
340 gezelter 471
341 mmeineke 377 move_a( dt );
342    
343     // calculate the forces
344    
345 gezelter 468 myFF->doForces(calcPot,calcStress);
346 mmeineke 377
347     // complete the verlet move
348    
349     move_b( dt );
350    
351 gezelter 471 if (!strcasecmp( entry_plug->ensemble, "NVT"))
352 gezelter 477 myES->NoseHooverNVT( dt / 2.0 , tStats->getKinetic() );
353 gezelter 471
354 gezelter 483 if (!strcasecmp( entry_plug->ensemble, "NPT") ) {
355     tStats->getPressureTensor(press);
356 gezelter 471 myES->NoseHooverAndersonNPT( dt,
357     tStats->getKinetic(),
358 gezelter 483 press);
359     }
360 gezelter 471
361 mmeineke 377 time = i + 1;
362    
363     if( entry_plug->setTemp ){
364     if( !(time % vel_n) ) tStats->velocitize();
365     }
366     if( !(time % sample_n) ) dump_out->writeDump( time * dt );
367 gezelter 468 if( !((time+1) % status_n) ) {
368     calcPot = 1;
369 chuckv 479 calcStress = 1;
370 gezelter 468 }
371     if( !(time % status_n) ){
372     e_out->writeStat( time * dt );
373     calcPot = 0;
374 chuckv 479 if (!strcasecmp(entry_plug->ensemble, "NPT")) calcStress = 1;
375     else calcStress = 0;
376 gezelter 468 }
377 mmeineke 377 }
378     }
379    
380     dump_out->writeFinal();
381    
382     delete dump_out;
383     delete e_out;
384    
385     }
386    
387    
388     void Verlet::move_a(double dt){
389    
390     const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
391    
392     double qx, qy, qz;
393     double vx, vy, vz;
394     int ma;
395     double h_dt = 0.5 * dt;
396     double h_dt2 = h_dt * dt;
397    
398     for( ma = 0; ma < c_natoms; ma++){
399    
400     qx = c_atoms[ma]->getX() + dt * c_atoms[ma]->get_vx() +
401     h_dt2 * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass();
402     qy = c_atoms[ma]->getY() + dt * c_atoms[ma]->get_vy() +
403     h_dt2 * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass();
404     qz = c_atoms[ma]->getZ() + dt * c_atoms[ma]->get_vz() +
405     h_dt2 * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass();
406    
407     vx = c_atoms[ma]->get_vx() +
408     h_dt * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass();
409     vy = c_atoms[ma]->get_vy() +
410     h_dt * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass();
411     vz = c_atoms[ma]->get_vz() +
412     h_dt * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass();
413    
414     c_atoms[ma]->setX(qx);
415     c_atoms[ma]->setY(qy);
416     c_atoms[ma]->setZ(qz);
417    
418     c_atoms[ma]->set_vx(vx);
419     c_atoms[ma]->set_vy(vy);
420     c_atoms[ma]->set_vz(vz);
421     }
422     }
423    
424     void Verlet::move_b( double dt ){
425    
426     const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2
427    
428     double vx, vy, vz;
429     int mb;
430     double h_dt = 0.5 * dt;
431    
432    
433     for( mb = 0; mb < c_natoms; mb++){
434    
435     vx = c_atoms[mb]->get_vx() +
436     h_dt * c_atoms[mb]->getFx() * e_convert / c_atoms[mb]->getMass();
437     vy = c_atoms[mb]->get_vy() +
438     h_dt * c_atoms[mb]->getFy() * e_convert / c_atoms[mb]->getMass();
439     vz = c_atoms[mb]->get_vz() +
440     h_dt * c_atoms[mb]->getFz() * e_convert / c_atoms[mb]->getMass();
441    
442     c_atoms[mb]->set_vx(vx);
443     c_atoms[mb]->set_vy(vy);
444     c_atoms[mb]->set_vz(vz);
445     }
446     }