ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/calc_gb.F90
Revision: 898
Committed: Mon Jan 5 22:49:14 2004 UTC (20 years, 6 months ago) by chuckv
File size: 12400 byte(s)
Log Message:
Attempting to increase performance by reducing spurious function calls

File Contents

# Content
1 module gb_pair
2 use force_globals
3 use definitions
4 use simulation
5 #ifdef IS_MPI
6 use mpiSimulation
7 #endif
8
9 implicit none
10
11 PRIVATE
12
13 logical, save :: gb_pair_initialized = .false.
14 real(kind=dp), save :: gb_sigma
15 real(kind=dp), save :: gb_l2b_ratio
16 real(kind=dp), save :: gb_eps
17 real(kind=dp), save :: gb_eps_ratio
18 real(kind=dp), save :: gb_mu
19 real(kind=dp), save :: gb_nu
20
21 public :: check_gb_pair_FF
22 public :: set_gb_pair_params
23 public :: do_gb_pair
24
25 contains
26
27 subroutine check_gb_pair_FF(status)
28 integer :: status
29 status = -1
30 if (gb_pair_initialized) status = 0
31 return
32 end subroutine check_gb_pair_FF
33
34 subroutine set_gb_pair_params(sigma, l2b_ratio, eps, eps_ratio, mu, nu)
35 real( kind = dp ), intent(in) :: sigma, l2b_ratio, eps, eps_ratio
36 real( kind = dp ), intent(in) :: mu, nu
37
38 gb_sigma = sigma
39 gb_l2b_ratio = l2b_ratio
40 gb_eps = eps
41 gb_eps_ratio = eps_ratio
42 gb_mu = mu
43 gb_nu = nu
44
45 gb_pair_initialized = .true.
46 return
47 end subroutine set_gb_pair_params
48
49
50 subroutine do_gb_pair(atom1, atom2, d, r, r2, u_l, pot, f, t, &
51 do_pot, do_stress)
52
53 integer, intent(in) :: atom1, atom2
54 integer :: id1, id2
55 real (kind=dp), intent(inout) :: r, r2
56 real (kind=dp), dimension(3), intent(in) :: d
57 real (kind=dp) :: pot
58 real (kind=dp), dimension(3,nLocal) :: u_l
59 real (kind=dp), dimension(3,nLocal) :: f
60 real (kind=dp), dimension(3,nLocal) :: t
61 logical, intent(in) :: do_pot, do_stress
62 real (kind = dp), dimension(3) :: ul1
63 real (kind = dp), dimension(3) :: ul2
64
65 real(kind=dp) :: chi, chiprime, emu, s2
66 real(kind=dp) :: r4, rdotu1, rdotu2, u1dotu2, g, gp, gpi, gmu, gmum
67 real(kind=dp) :: curlyE, enu, enum, eps, dotsum, dotdiff, ds2, dd2
68 real(kind=dp) :: opXdot, omXdot, opXpdot, omXpdot, pref, gfact
69 real(kind=dp) :: BigR, Ri, Ri2, Ri6, Ri7, Ri12, Ri13, R126, R137
70 real(kind=dp) :: dru1dx, dru1dy, dru1dz
71 real(kind=dp) :: dru2dx, dru2dy, dru2dz
72 real(kind=dp) :: dBigRdx, dBigRdy, dBigRdz
73 real(kind=dp) :: dBigRdu1x, dBigRdu1y, dBigRdu1z
74 real(kind=dp) :: dBigRdu2x, dBigRdu2y, dBigRdu2z
75 real(kind=dp) :: dUdx, dUdy, dUdz
76 real(kind=dp) :: dUdu1x, dUdu1y, dUdu1z, dUdu2x, dUdu2y, dUdu2z
77 real(kind=dp) :: dcE, dcEdu1x, dcEdu1y, dcEdu1z, dcEdu2x, dcEdu2y, dcEdu2z
78 real(kind=dp) :: depsdu1x, depsdu1y, depsdu1z, depsdu2x, depsdu2y, depsdu2z
79 real(kind=dp) :: drdx, drdy, drdz
80 real(kind=dp) :: dgdx, dgdy, dgdz
81 real(kind=dp) :: dgdu1x, dgdu1y, dgdu1z, dgdu2x, dgdu2y, dgdu2z
82 real(kind=dp) :: dgpdx, dgpdy, dgpdz
83 real(kind=dp) :: dgpdu1x, dgpdu1y, dgpdu1z, dgpdu2x, dgpdu2y, dgpdu2z
84 real(kind=dp) :: line1a, line1bx, line1by, line1bz
85 real(kind=dp) :: line2a, line2bx, line2by, line2bz
86 real(kind=dp) :: line3a, line3b, line3, line3x, line3y, line3z
87 real(kind=dp) :: term1x, term1y, term1z, term1u1x, term1u1y, term1u1z
88 real(kind=dp) :: term1u2x, term1u2y, term1u2z
89 real(kind=dp) :: term2a, term2b, term2u1x, term2u1y, term2u1z
90 real(kind=dp) :: term2u2x, term2u2y, term2u2z
91 real(kind=dp) :: yick1, yick2, mess1, mess2
92
93 s2 = (gb_l2b_ratio)**2
94 emu = (gb_eps_ratio)**(1.0d0/gb_mu)
95
96 chi = (s2 - 1.0d0)/(s2 + 1.0d0)
97 chiprime = (1.0d0 - emu)/(1.0d0 + emu)
98
99 r4 = r2*r2
100
101 #ifdef IS_MPI
102 ul1(1) = u_l_Row(1,atom1)
103 ul1(2) = u_l_Row(2,atom1)
104 ul1(3) = u_l_Row(3,atom1)
105
106 ul2(1) = u_l_Col(1,atom2)
107 ul2(2) = u_l_Col(2,atom2)
108 ul2(3) = u_l_Col(3,atom2)
109 #else
110 ul1(1) = u_l(1,atom1)
111 ul1(2) = u_l(2,atom1)
112 ul1(3) = u_l(3,atom1)
113
114 ul2(1) = u_l(1,atom2)
115 ul2(2) = u_l(2,atom2)
116 ul2(3) = u_l(3,atom2)
117 #endif
118
119 dru1dx = ul1(1)
120 dru2dx = ul2(1)
121 dru1dy = ul1(2)
122 dru2dy = ul2(2)
123 dru1dz = ul1(3)
124 dru2dz = ul2(3)
125
126 drdx = d(1) / r
127 drdy = d(2) / r
128 drdz = d(3) / r
129
130 ! do some dot products:
131 ! NB the r in these dot products is the actual intermolecular vector,
132 ! and is not the unit vector in that direction.
133
134 rdotu1 = d(1)*ul1(1) + d(2)*ul1(2) + d(3)*ul1(3)
135 rdotu2 = d(1)*ul2(1) + d(2)*ul2(2) + d(3)*ul2(3)
136 u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) + ul1(3)*ul2(3)
137
138 ! This stuff is all for the calculation of g(Chi) and dgdx
139 ! Line numbers roughly follow the lines in equation A25 of Luckhurst
140 ! et al. Liquid Crystals 8, 451-464 (1990).
141 ! We note however, that there are some major typos in that Appendix
142 ! of the Luckhurst paper, particularly in equations A23, A29 and A31
143 ! We have attempted to correct them below.
144
145 dotsum = rdotu1+rdotu2
146 dotdiff = rdotu1-rdotu2
147 ds2 = dotsum*dotsum
148 dd2 = dotdiff*dotdiff
149
150 opXdot = 1.0d0 + Chi*u1dotu2
151 omXdot = 1.0d0 - Chi*u1dotu2
152 opXpdot = 1.0d0 + ChiPrime*u1dotu2
153 omXpdot = 1.0d0 - ChiPrime*u1dotu2
154
155 line1a = dotsum/opXdot
156 line1bx = dru1dx + dru2dx
157 line1by = dru1dy + dru2dy
158 line1bz = dru1dz + dru2dz
159
160 line2a = dotdiff/omXdot
161 line2bx = dru1dx - dru2dx
162 line2by = dru1dy - dru2dy
163 line2bz = dru1dz - dru2dz
164
165 term1x = -Chi*(line1a*line1bx + line2a*line2bx)/r2
166 term1y = -Chi*(line1a*line1by + line2a*line2by)/r2
167 term1z = -Chi*(line1a*line1bz + line2a*line2bz)/r2
168
169 line3a = ds2/opXdot
170 line3b = dd2/omXdot
171 line3 = Chi*(line3a + line3b)/r4
172 line3x = d(1)*line3
173 line3y = d(2)*line3
174 line3z = d(3)*line3
175
176 dgdx = term1x + line3x
177 dgdy = term1y + line3y
178 dgdz = term1z + line3z
179
180 term1u1x = 2.0d0*(line1a+line2a)*d(1)
181 term1u1y = 2.0d0*(line1a+line2a)*d(2)
182 term1u1z = 2.0d0*(line1a+line2a)*d(3)
183 term1u2x = 2.0d0*(line1a-line2a)*d(1)
184 term1u2y = 2.0d0*(line1a-line2a)*d(2)
185 term1u2z = 2.0d0*(line1a-line2a)*d(3)
186
187 term2a = -line3a/opXdot
188 term2b = line3b/omXdot
189
190 term2u1x = Chi*ul2(1)*(term2a + term2b)
191 term2u1y = Chi*ul2(2)*(term2a + term2b)
192 term2u1z = Chi*ul2(3)*(term2a + term2b)
193 term2u2x = Chi*ul1(1)*(term2a + term2b)
194 term2u2y = Chi*ul1(2)*(term2a + term2b)
195 term2u2z = Chi*ul1(3)*(term2a + term2b)
196
197 pref = -Chi*0.5d0/r2
198
199 dgdu1x = pref*(term1u1x+term2u1x)
200 dgdu1y = pref*(term1u1y+term2u1y)
201 dgdu1z = pref*(term1u1z+term2u1z)
202 dgdu2x = pref*(term1u2x+term2u2x)
203 dgdu2y = pref*(term1u2y+term2u2y)
204 dgdu2z = pref*(term1u2z+term2u2z)
205
206 g = 1.0d0 - Chi*(line3a + line3b)/(2.0d0*r2)
207
208 BigR = (r - gb_sigma*(g**(-0.5d0)) + gb_sigma)/gb_sigma
209 Ri = 1.0d0/BigR
210 Ri2 = Ri*Ri
211 Ri6 = Ri2*Ri2*Ri2
212 Ri7 = Ri6*Ri
213 Ri12 = Ri6*Ri6
214 Ri13 = Ri6*Ri7
215
216 gfact = (g**(-1.5d0))*0.5d0
217
218 dBigRdx = drdx/gb_sigma + dgdx*gfact
219 dBigRdy = drdy/gb_sigma + dgdy*gfact
220 dBigRdz = drdz/gb_sigma + dgdz*gfact
221 dBigRdu1x = dgdu1x*gfact
222 dBigRdu1y = dgdu1y*gfact
223 dBigRdu1z = dgdu1z*gfact
224 dBigRdu2x = dgdu2x*gfact
225 dBigRdu2y = dgdu2y*gfact
226 dBigRdu2z = dgdu2z*gfact
227
228 ! Now, we must do it again for g(ChiPrime) and dgpdx
229
230 line1a = dotsum/opXpdot
231 line2a = dotdiff/omXpdot
232 term1x = -ChiPrime*(line1a*line1bx + line2a*line2bx)/r2
233 term1y = -ChiPrime*(line1a*line1by + line2a*line2by)/r2
234 term1z = -ChiPrime*(line1a*line1bz + line2a*line2bz)/r2
235 line3a = ds2/opXpdot
236 line3b = dd2/omXpdot
237 line3 = ChiPrime*(line3a + line3b)/r4
238 line3x = d(1)*line3
239 line3y = d(2)*line3
240 line3z = d(3)*line3
241
242 dgpdx = term1x + line3x
243 dgpdy = term1y + line3y
244 dgpdz = term1z + line3z
245
246 term1u1x = 2.0d0*(line1a+line2a)*d(1)
247 term1u1y = 2.0d0*(line1a+line2a)*d(2)
248 term1u1z = 2.0d0*(line1a+line2a)*d(3)
249 term1u2x = 2.0d0*(line1a-line2a)*d(1)
250 term1u2y = 2.0d0*(line1a-line2a)*d(2)
251 term1u2z = 2.0d0*(line1a-line2a)*d(3)
252
253 term2a = -line3a/opXpdot
254 term2b = line3b/omXpdot
255
256 term2u1x = ChiPrime*ul2(1)*(term2a + term2b)
257 term2u1y = ChiPrime*ul2(2)*(term2a + term2b)
258 term2u1z = ChiPrime*ul2(3)*(term2a + term2b)
259 term2u2x = ChiPrime*ul1(1)*(term2a + term2b)
260 term2u2y = ChiPrime*ul1(2)*(term2a + term2b)
261 term2u2z = ChiPrime*ul1(3)*(term2a + term2b)
262
263 pref = -ChiPrime*0.5d0/r2
264
265 dgpdu1x = pref*(term1u1x+term2u1x)
266 dgpdu1y = pref*(term1u1y+term2u1y)
267 dgpdu1z = pref*(term1u1z+term2u1z)
268 dgpdu2x = pref*(term1u2x+term2u2x)
269 dgpdu2y = pref*(term1u2y+term2u2y)
270 dgpdu2z = pref*(term1u2z+term2u2z)
271
272 gp = 1.0d0 - ChiPrime*(line3a + line3b)/(2.0d0*r2)
273 gmu = gp**gb_mu
274 gpi = 1.0d0 / gp
275 gmum = gmu*gpi
276
277 ! write(*,*) atom1, atom2, Chi, u1dotu2
278 curlyE = 1.0d0/dsqrt(1.0d0 - Chi*Chi*u1dotu2*u1dotu2)
279
280 dcE = (curlyE**3)*Chi*Chi*u1dotu2
281
282 dcEdu1x = dcE*ul2(1)
283 dcEdu1y = dcE*ul2(2)
284 dcEdu1z = dcE*ul2(3)
285 dcEdu2x = dcE*ul1(1)
286 dcEdu2y = dcE*ul1(2)
287 dcEdu2z = dcE*ul1(3)
288
289 enu = curlyE**gb_nu
290 enum = enu/curlyE
291
292 eps = gb_eps*enu*gmu
293
294 yick1 = gb_eps*enu*gb_mu*gmum
295 yick2 = gb_eps*gmu*gb_nu*enum
296
297 depsdu1x = yick1*dgpdu1x + yick2*dcEdu1x
298 depsdu1y = yick1*dgpdu1y + yick2*dcEdu1y
299 depsdu1z = yick1*dgpdu1z + yick2*dcEdu1z
300 depsdu2x = yick1*dgpdu2x + yick2*dcEdu2x
301 depsdu2y = yick1*dgpdu2y + yick2*dcEdu2y
302 depsdu2z = yick1*dgpdu2z + yick2*dcEdu2z
303
304 R126 = Ri12 - Ri6
305 R137 = 6.0d0*Ri7 - 12.0d0*Ri13
306
307 mess1 = gmu*R137
308 mess2 = R126*gb_mu*gmum
309
310 dUdx = 4.0d0*gb_eps*enu*(mess1*dBigRdx + mess2*dgpdx)
311 dUdy = 4.0d0*gb_eps*enu*(mess1*dBigRdy + mess2*dgpdy)
312 dUdz = 4.0d0*gb_eps*enu*(mess1*dBigRdz + mess2*dgpdz)
313
314 dUdu1x = 4.0d0*(R126*depsdu1x + eps*R137*dBigRdu1x)
315 dUdu1y = 4.0d0*(R126*depsdu1y + eps*R137*dBigRdu1y)
316 dUdu1z = 4.0d0*(R126*depsdu1z + eps*R137*dBigRdu1z)
317 dUdu2x = 4.0d0*(R126*depsdu2x + eps*R137*dBigRdu2x)
318 dUdu2y = 4.0d0*(R126*depsdu2y + eps*R137*dBigRdu2y)
319 dUdu2z = 4.0d0*(R126*depsdu2z + eps*R137*dBigRdu2z)
320
321 #ifdef IS_MPI
322 f_Row(1,atom1) = f_Row(1,atom1) + dUdx
323 f_Row(2,atom1) = f_Row(2,atom1) + dUdy
324 f_Row(3,atom1) = f_Row(3,atom1) + dUdz
325
326 f_Col(1,atom2) = f_Col(1,atom2) - dUdx
327 f_Col(2,atom2) = f_Col(2,atom2) - dUdy
328 f_Col(3,atom2) = f_Col(3,atom2) - dUdz
329
330 t_Row(1,atom1) = t_Row(1,atom1) - ul1(2)*dUdu1z + ul1(3)*dUdu1y
331 t_Row(2,atom1) = t_Row(2,atom1) - ul1(3)*dUdu1x + ul1(1)*dUdu1z
332 t_Row(3,atom1) = t_Row(3,atom1) - ul1(1)*dUdu1y + ul1(2)*dUdu1x
333
334 t_Col(1,atom2) = t_Col(1,atom2) - ul2(2)*dUdu2z + ul2(3)*dUdu2y
335 t_Col(2,atom2) = t_Col(2,atom2) - ul2(3)*dUdu2x + ul2(1)*dUdu2z
336 t_Col(3,atom2) = t_Col(3,atom2) - ul2(1)*dUdu2y + ul2(2)*dUdu2x
337 #else
338 f(1,atom1) = f(1,atom1) + dUdx
339 f(2,atom1) = f(2,atom1) + dUdy
340 f(3,atom1) = f(3,atom1) + dUdz
341
342 f(1,atom2) = f(1,atom2) - dUdx
343 f(2,atom2) = f(2,atom2) - dUdy
344 f(3,atom2) = f(3,atom2) - dUdz
345
346 t(1,atom1) = t(1,atom1) - ul1(2)*dUdu1z + ul1(3)*dUdu1y
347 t(2,atom1) = t(2,atom1) - ul1(3)*dUdu1x + ul1(1)*dUdu1z
348 t(3,atom1) = t(3,atom1) - ul1(1)*dUdu1y + ul1(2)*dUdu1x
349
350 t(1,atom2) = t(1,atom2) - ul2(2)*dUdu2z + ul2(3)*dUdu2y
351 t(2,atom2) = t(2,atom2) - ul2(3)*dUdu2x + ul2(1)*dUdu2z
352 t(3,atom2) = t(3,atom2) - ul2(1)*dUdu2y + ul2(2)*dUdu2x
353 #endif
354
355 if (do_stress) then
356
357 #ifdef IS_MPI
358 id1 = tagRow(atom1)
359 id2 = tagColumn(atom2)
360 #else
361 id1 = atom1
362 id2 = atom2
363 #endif
364
365 if (molMembershipList(id1) .ne. molMembershipList(id2)) then
366
367 ! because the d vector is the rj - ri vector, and
368 ! because dUdx, dUdy, dUdz are the force on atom i, we need a
369 ! negative sign here:
370
371 tau_Temp(1) = tau_Temp(1) - d(1) * dUdx
372 tau_Temp(2) = tau_Temp(2) - d(1) * dUdy
373 tau_Temp(3) = tau_Temp(3) - d(1) * dUdz
374 tau_Temp(4) = tau_Temp(4) - d(2) * dUdx
375 tau_Temp(5) = tau_Temp(5) - d(2) * dUdy
376 tau_Temp(6) = tau_Temp(6) - d(2) * dUdz
377 tau_Temp(7) = tau_Temp(7) - d(3) * dUdx
378 tau_Temp(8) = tau_Temp(8) - d(3) * dUdy
379 tau_Temp(9) = tau_Temp(9) - d(3) * dUdz
380
381 virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
382 endif
383 endif
384
385 if (do_pot) then
386 #ifdef IS_MPI
387 pot_row(atom1) = pot_row(atom1) + 2.0d0*eps*R126
388 pot_col(atom2) = pot_col(atom2) + 2.0d0*eps*R126
389 #else
390 pot = pot + 4.0*eps*R126
391 #endif
392 endif
393
394 return
395 end subroutine do_gb_pair
396
397 end module gb_pair
398
399