1 |
module shapes |
2 |
|
3 |
use force_globals |
4 |
use definitions |
5 |
use atype_module |
6 |
use vector_class |
7 |
use simulation |
8 |
use status |
9 |
#ifdef IS_MPI |
10 |
use mpiSimulation |
11 |
#endif |
12 |
implicit none |
13 |
|
14 |
PRIVATE |
15 |
|
16 |
INTEGER, PARAMETER:: CHEBYSHEV_TN = 1 |
17 |
INTEGER, PARAMETER:: CHEBYSHEV_UN = 2 |
18 |
INTEGER, PARAMETER:: LAGUERRE = 3 |
19 |
INTEGER, PARAMETER:: HERMITE = 4 |
20 |
INTEGER, PARAMETER:: SH_COS = 0 |
21 |
INTEGER, PARAMETER:: SH_SIN = 1 |
22 |
|
23 |
logical, save :: haveShapeMap = .false. |
24 |
|
25 |
public :: do_shape_pair |
26 |
|
27 |
type :: ShapeList |
28 |
integer :: nContactFuncs = 0 |
29 |
integer :: nRangeFuncs = 0 |
30 |
integer :: nStrengthFuncs = 0 |
31 |
integer :: bigL = 0 |
32 |
integer :: bigM = 0 |
33 |
integer, allocatable, dimension(:) :: ContactFuncLValue |
34 |
integer, allocatable, dimension(:) :: ContactFuncMValue |
35 |
integer, allocatable, dimension(:) :: ContactFunctionType |
36 |
real(kind=dp), allocatable, dimension(:) :: ContactFuncCoefficient |
37 |
integer, allocatable, dimension(:) :: RangeFuncLValue |
38 |
integer, allocatable, dimension(:) :: RangeFuncMValue |
39 |
integer, allocatable, dimension(:) :: RangeFunctionType |
40 |
real(kind=dp), allocatable, dimension(:) :: RangeFuncCoefficient |
41 |
integer, allocatable, dimension(:) :: StrengthFuncLValue |
42 |
integer, allocatable, dimension(:) :: StrengthFuncMValue |
43 |
integer, allocatable, dimension(:) :: StrengthFunctionType |
44 |
real(kind=dp), allocatable, dimension(:) :: StrengthFuncCoefficient |
45 |
logical :: isLJ = .false. |
46 |
real ( kind = dp ) :: epsilon = 0.0_dp |
47 |
real ( kind = dp ) :: sigma = 0.0_dp |
48 |
end type ShapeList |
49 |
|
50 |
type(ShapeList), dimension(:),allocatable :: ShapeMap |
51 |
|
52 |
integer :: lmax |
53 |
real (kind=dp), allocatable, dimension(:,:) :: plm_i, dlm_i, plm_j, dlm_j |
54 |
real (kind=dp), allocatable, dimension(:) :: tm_i, dtm_i, um_i, dum_i |
55 |
real (kind=dp), allocatable, dimension(:) :: tm_j, dtm_j, um_j, dum_j |
56 |
|
57 |
contains |
58 |
|
59 |
subroutine createShapeMap(status) |
60 |
integer :: nAtypes |
61 |
integer :: status |
62 |
integer :: i |
63 |
real (kind=DP) :: thisDP |
64 |
logical :: thisProperty |
65 |
|
66 |
status = 0 |
67 |
|
68 |
nAtypes = getSize(atypes) |
69 |
|
70 |
if (nAtypes == 0) then |
71 |
status = -1 |
72 |
return |
73 |
end if |
74 |
|
75 |
if (.not. allocated(ShapeMap)) then |
76 |
allocate(ShapeMap(nAtypes)) |
77 |
endif |
78 |
|
79 |
do i = 1, nAtypes |
80 |
|
81 |
call getElementProperty(atypes, i, "is_SHAPE", thisProperty) |
82 |
|
83 |
if (thisProperty) then |
84 |
|
85 |
! do all of the shape stuff |
86 |
|
87 |
endif |
88 |
|
89 |
call getElementProperty(atypes, i, "is_LJ", thisProperty) |
90 |
|
91 |
if (thisProperty) then |
92 |
ShapeMap(i)%isLJ = .true. |
93 |
call getElementProperty(atypes, i, "lj_epsilon", thisDP) |
94 |
ShapeMap(i)%epsilon = thisDP |
95 |
call getElementProperty(atypes, i, "lj_sigma", thisDP) |
96 |
ShapeMap(i)%sigma = thisDP |
97 |
else |
98 |
ShapeMap(i)%isLJ = .false. |
99 |
endif |
100 |
|
101 |
|
102 |
end do |
103 |
|
104 |
haveShapeMap = .true. |
105 |
|
106 |
end subroutine createShapeMap |
107 |
|
108 |
|
109 |
|
110 |
subroutine do_shape_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, & |
111 |
pot, A, f, t, do_pot) |
112 |
|
113 |
integer, intent(in) :: atom1, atom2 |
114 |
real (kind=dp), intent(inout) :: rij, r2 |
115 |
real (kind=dp), dimension(3), intent(in) :: d |
116 |
real (kind=dp), dimension(3), intent(inout) :: fpair |
117 |
real (kind=dp) :: pot, vpair, sw |
118 |
real (kind=dp), dimension(9,nLocal) :: A |
119 |
real (kind=dp), dimension(3,nLocal) :: f |
120 |
real (kind=dp), dimension(3,nLocal) :: t |
121 |
logical, intent(in) :: do_pot |
122 |
|
123 |
real (kind=dp) :: r3, r5, rt2, rt3, rt5, rt6, rt11, rt12, rt126 |
124 |
integer :: me1, me2, l, m, lm, id1, id2, localError, function_type |
125 |
real (kind=dp) :: sigma_i, s_i, eps_i, sigma_j, s_j, eps_j |
126 |
real (kind=dp) :: coeff |
127 |
|
128 |
real (kind=dp) :: dsigmaidx, dsigmaidy, dsigmaidz |
129 |
real (kind=dp) :: dsigmaidux, dsigmaiduy, dsigmaiduz |
130 |
real (kind=dp) :: dsigmajdx, dsigmajdy, dsigmajdz |
131 |
real (kind=dp) :: dsigmajdux, dsigmajduy, dsigmajduz |
132 |
|
133 |
real (kind=dp) :: dsidx, dsidy, dsidz |
134 |
real (kind=dp) :: dsidux, dsiduy, dsiduz |
135 |
real (kind=dp) :: dsjdx, dsjdy, dsjdz |
136 |
real (kind=dp) :: dsjdux, dsjduy, dsjduz |
137 |
|
138 |
real (kind=dp) :: depsidx, depsidy, depsidz |
139 |
real (kind=dp) :: depsidux, depsiduy, depsiduz |
140 |
real (kind=dp) :: depsjdx, depsjdy, depsjdz |
141 |
real (kind=dp) :: depsjdux, depsjduy, depsjduz |
142 |
|
143 |
real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2 |
144 |
|
145 |
real (kind=dp) :: proji, proji3, projj, projj3 |
146 |
real (kind=dp) :: cti, ctj, cpi, cpj, spi, spj |
147 |
real (kind=dp) :: Phunc, sigma, s, eps, rtdenom, rt |
148 |
|
149 |
real (kind=dp) :: dctidx, dctidy, dctidz |
150 |
real (kind=dp) :: dctidux, dctiduy, dctiduz |
151 |
real (kind=dp) :: dctjdx, dctjdy, dctjdz |
152 |
real (kind=dp) :: dctjdux, dctjduy, dctjduz |
153 |
|
154 |
real (kind=dp) :: dcpidx, dcpidy, dcpidz |
155 |
real (kind=dp) :: dcpidux, dcpiduy, dcpiduz |
156 |
real (kind=dp) :: dcpjdx, dcpjdy, dcpjdz |
157 |
real (kind=dp) :: dcpjdux, dcpjduy, dcpjduz |
158 |
|
159 |
real (kind=dp) :: dspidx, dspidy, dspidz |
160 |
real (kind=dp) :: dspidux, dspiduy, dspiduz |
161 |
real (kind=dp) :: dspjdx, dspjdy, dspjdz |
162 |
real (kind=dp) :: dspjdux, dspjduy, dspjduz |
163 |
|
164 |
real (kind=dp) :: dPhuncdX, dPhuncdY, dPhuncdZ |
165 |
real (kind=dp) :: dPhuncdUx, dPhuncdUy, dPhuncdUz |
166 |
|
167 |
real (kind=dp) :: dsigmadxi, dsigmadyi, dsigmadzi |
168 |
real (kind=dp) :: dsigmaduxi, dsigmaduyi, dsigmaduzi |
169 |
real (kind=dp) :: dsigmadxj, dsigmadyj, dsigmadzj |
170 |
real (kind=dp) :: dsigmaduxj, dsigmaduyj, dsigmaduzj |
171 |
|
172 |
real (kind=dp) :: dsdxi, dsdyi, dsdzi |
173 |
real (kind=dp) :: dsduxi, dsduyi, dsduzi |
174 |
real (kind=dp) :: dsdxj, dsdyj, dsdzj |
175 |
real (kind=dp) :: dsduxj, dsduyj, dsduzj |
176 |
|
177 |
real (kind=dp) :: depsdxi, depsdyi, depsdzi |
178 |
real (kind=dp) :: depsduxi, depsduyi, depsduzi |
179 |
real (kind=dp) :: depsdxj, depsdyj, depsdzj |
180 |
real (kind=dp) :: depsduxj, depsduyj, depsduzj |
181 |
|
182 |
real (kind=dp) :: drtdxi, drtdyi, drtdzi |
183 |
real (kind=dp) :: drtduxi, drtduyi, drtduzi |
184 |
real (kind=dp) :: drtdxj, drtdyj, drtdzj |
185 |
real (kind=dp) :: drtduxj, drtduyj, drtduzj |
186 |
|
187 |
real (kind=dp) :: drdxi, drdyi, drdzi |
188 |
real (kind=dp) :: drduxi, drduyi, drduzi |
189 |
real (kind=dp) :: drdxj, drdyj, drdzj |
190 |
real (kind=dp) :: drduxj, drduyj, drduzj |
191 |
|
192 |
real (kind=dp) :: dvdxi, dvdyi, dvdzi |
193 |
real (kind=dp) :: dvduxi, dvduyi, dvduzi |
194 |
real (kind=dp) :: dvdxj, dvdyj, dvdzj |
195 |
real (kind=dp) :: dvduxj, dvduyj, dvduzj |
196 |
|
197 |
real (kind=dp) :: fxi, fyi, fzi, fxj, fyj, fzj |
198 |
real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj |
199 |
real (kind=dp) :: fxii, fyii, fzii, fxij, fyij, fzij |
200 |
real (kind=dp) :: fxji, fyji, fzji, fxjj, fyjj, fzjj |
201 |
real (kind=dp) :: fxradial, fyradial, fzradial |
202 |
|
203 |
if (.not.haveShapeMap) then |
204 |
localError = 0 |
205 |
call createShapeMap(localError) |
206 |
if ( localError .ne. 0 ) then |
207 |
call handleError("calc_shape", "ShapeMap creation failed!") |
208 |
return |
209 |
end if |
210 |
endif |
211 |
|
212 |
!! We assume that the rotation matrices have already been calculated |
213 |
!! and placed in the A array. |
214 |
|
215 |
r3 = r2*rij |
216 |
r5 = r3*r2 |
217 |
|
218 |
drdxi = -d(1) / rij |
219 |
drdyi = -d(2) / rij |
220 |
drdzi = -d(3) / rij |
221 |
|
222 |
drdxj = d(1) / rij |
223 |
drdyj = d(2) / rij |
224 |
drdzj = d(3) / rij |
225 |
|
226 |
#ifdef IS_MPI |
227 |
me1 = atid_Row(atom1) |
228 |
me2 = atid_Col(atom2) |
229 |
#else |
230 |
me1 = atid(atom1) |
231 |
me2 = atid(atom2) |
232 |
#endif |
233 |
|
234 |
if (ShapeMap(me1)%isLJ) then |
235 |
sigma_i = ShapeMap(me1)%sigma |
236 |
s_i = ShapeMap(me1)%sigma |
237 |
eps_i = ShapeMap(me1)%epsilon |
238 |
dsigmaidx = 0.0d0 |
239 |
dsigmaidy = 0.0d0 |
240 |
dsigmaidz = 0.0d0 |
241 |
dsigmaidux = 0.0d0 |
242 |
dsigmaiduy = 0.0d0 |
243 |
dsigmaiduz = 0.0d0 |
244 |
dsidx = 0.0d0 |
245 |
dsidy = 0.0d0 |
246 |
dsidz = 0.0d0 |
247 |
dsidux = 0.0d0 |
248 |
dsiduy = 0.0d0 |
249 |
dsiduz = 0.0d0 |
250 |
depsidx = 0.0d0 |
251 |
depsidy = 0.0d0 |
252 |
depsidz = 0.0d0 |
253 |
depsidux = 0.0d0 |
254 |
depsiduy = 0.0d0 |
255 |
depsiduz = 0.0d0 |
256 |
else |
257 |
|
258 |
#ifdef IS_MPI |
259 |
! rotate the inter-particle separation into the two different |
260 |
! body-fixed coordinate systems: |
261 |
|
262 |
xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3) |
263 |
yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3) |
264 |
zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3) |
265 |
|
266 |
#else |
267 |
! rotate the inter-particle separation into the two different |
268 |
! body-fixed coordinate systems: |
269 |
|
270 |
xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3) |
271 |
yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3) |
272 |
zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3) |
273 |
|
274 |
#endif |
275 |
|
276 |
xi2 = xi*xi |
277 |
yi2 = yi*yi |
278 |
zi2 = zi*zi |
279 |
|
280 |
proji = sqrt(xi2 + yi2) |
281 |
proji3 = proji*proji*proji |
282 |
|
283 |
cti = zi / rij |
284 |
dctidx = - zi * xi / r3 |
285 |
dctidy = - zi * yi / r3 |
286 |
dctidz = 1.0d0 / rij - zi2 / r3 |
287 |
dctidux = yi / rij |
288 |
dctiduy = -xi / rij |
289 |
dctiduz = 0.0d0 |
290 |
|
291 |
cpi = xi / proji |
292 |
dcpidx = 1.0d0 / proji - xi2 / proji3 |
293 |
dcpidy = - xi * yi / proji3 |
294 |
dcpidz = 0.0d0 |
295 |
dcpidux = xi * yi * zi / proji3 |
296 |
dcpiduy = -zi * (1.0d0 / proji - xi2 / proji3) |
297 |
dcpiduz = -yi * (1.0d0 / proji - xi2 / proji3) - (xi2 * yi / proji3) |
298 |
|
299 |
spi = yi / proji |
300 |
dspidx = - xi * yi / proji3 |
301 |
dspidy = 1.0d0 / proji - yi2 / proji3 |
302 |
dspidz = 0.0d0 |
303 |
dspidux = -zi * (1.0d0 / proji - yi2 / proji3) |
304 |
dspiduy = xi * yi * zi / proji3 |
305 |
dspiduz = xi * (1.0d0 / proji - yi2 / proji3) + (xi * yi2 / proji3) |
306 |
|
307 |
call Associated_Legendre(cti, ShapeMap(me1)%bigL, & |
308 |
ShapeMap(me1)%bigM, lmax, plm_i, dlm_i) |
309 |
|
310 |
call Orthogonal_Polynomial(cpi, ShapeMap(me1)%bigM, CHEBYSHEV_TN, & |
311 |
tm_i, dtm_i) |
312 |
call Orthogonal_Polynomial(cpi, ShapeMap(me1)%bigM, CHEBYSHEV_UN, & |
313 |
um_i, dum_i) |
314 |
|
315 |
sigma_i = 0.0d0 |
316 |
s_i = 0.0d0 |
317 |
eps_i = 0.0d0 |
318 |
dsigmaidx = 0.0d0 |
319 |
dsigmaidy = 0.0d0 |
320 |
dsigmaidz = 0.0d0 |
321 |
dsigmaidux = 0.0d0 |
322 |
dsigmaiduy = 0.0d0 |
323 |
dsigmaiduz = 0.0d0 |
324 |
dsidx = 0.0d0 |
325 |
dsidy = 0.0d0 |
326 |
dsidz = 0.0d0 |
327 |
dsidux = 0.0d0 |
328 |
dsiduy = 0.0d0 |
329 |
dsiduz = 0.0d0 |
330 |
depsidx = 0.0d0 |
331 |
depsidy = 0.0d0 |
332 |
depsidz = 0.0d0 |
333 |
depsidux = 0.0d0 |
334 |
depsiduy = 0.0d0 |
335 |
depsiduz = 0.0d0 |
336 |
|
337 |
do lm = 1, ShapeMap(me1)%nContactFuncs |
338 |
l = ShapeMap(me1)%ContactFuncLValue(lm) |
339 |
m = ShapeMap(me1)%ContactFuncMValue(lm) |
340 |
coeff = ShapeMap(me1)%ContactFuncCoefficient(lm) |
341 |
function_type = ShapeMap(me1)%ContactFunctionType(lm) |
342 |
|
343 |
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
344 |
Phunc = coeff * tm_i(m) |
345 |
dPhuncdX = coeff * dtm_i(m) * dcpidx |
346 |
dPhuncdY = coeff * dtm_i(m) * dcpidy |
347 |
dPhuncdZ = coeff * dtm_i(m) * dcpidz |
348 |
dPhuncdUz = coeff * dtm_i(m) * dcpidux |
349 |
dPhuncdUy = coeff * dtm_i(m) * dcpiduy |
350 |
dPhuncdUz = coeff * dtm_i(m) * dcpiduz |
351 |
else |
352 |
Phunc = coeff * spi * um_i(m-1) |
353 |
dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1)) |
354 |
dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1)) |
355 |
dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1)) |
356 |
dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1)) |
357 |
dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1)) |
358 |
dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1)) |
359 |
endif |
360 |
|
361 |
sigma_i = sigma_i + plm_i(l,m)*Phunc |
362 |
|
363 |
dsigmaidx = dsigmaidx + plm_i(l,m)*dPhuncdX + & |
364 |
Phunc * dlm_i(l,m) * dctidx |
365 |
dsigmaidy = dsigmaidy + plm_i(l,m)*dPhuncdY + & |
366 |
Phunc * dlm_i(l,m) * dctidy |
367 |
dsigmaidz = dsigmaidz + plm_i(l,m)*dPhuncdZ + & |
368 |
Phunc * dlm_i(l,m) * dctidz |
369 |
|
370 |
dsigmaidux = dsigmaidux + plm_i(l,m)* dPhuncdUx + & |
371 |
Phunc * dlm_i(l,m) * dctidux |
372 |
dsigmaiduy = dsigmaiduy + plm_i(l,m)* dPhuncdUy + & |
373 |
Phunc * dlm_i(l,m) * dctiduy |
374 |
dsigmaiduz = dsigmaiduz + plm_i(l,m)* dPhuncdUz + & |
375 |
Phunc * dlm_i(l,m) * dctiduz |
376 |
|
377 |
end do |
378 |
|
379 |
do lm = 1, ShapeMap(me1)%nRangeFuncs |
380 |
l = ShapeMap(me1)%RangeFuncLValue(lm) |
381 |
m = ShapeMap(me1)%RangeFuncMValue(lm) |
382 |
coeff = ShapeMap(me1)%RangeFuncCoefficient(lm) |
383 |
function_type = ShapeMap(me1)%RangeFunctionType(lm) |
384 |
|
385 |
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
386 |
Phunc = coeff * tm_i(m) |
387 |
dPhuncdX = coeff * dtm_i(m) * dcpidx |
388 |
dPhuncdY = coeff * dtm_i(m) * dcpidy |
389 |
dPhuncdZ = coeff * dtm_i(m) * dcpidz |
390 |
dPhuncdUz = coeff * dtm_i(m) * dcpidux |
391 |
dPhuncdUy = coeff * dtm_i(m) * dcpiduy |
392 |
dPhuncdUz = coeff * dtm_i(m) * dcpiduz |
393 |
else |
394 |
Phunc = coeff * spi * um_i(m-1) |
395 |
dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1)) |
396 |
dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1)) |
397 |
dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1)) |
398 |
dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1)) |
399 |
dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1)) |
400 |
dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1)) |
401 |
endif |
402 |
|
403 |
s_i = s_i + plm_i(l,m)*Phunc |
404 |
|
405 |
dsidx = dsidx + plm_i(l,m)*dPhuncdX + & |
406 |
Phunc * dlm_i(l,m) * dctidx |
407 |
dsidy = dsidy + plm_i(l,m)*dPhuncdY + & |
408 |
Phunc * dlm_i(l,m) * dctidy |
409 |
dsidz = dsidz + plm_i(l,m)*dPhuncdZ + & |
410 |
Phunc * dlm_i(l,m) * dctidz |
411 |
|
412 |
dsidux = dsidux + plm_i(l,m)* dPhuncdUx + & |
413 |
Phunc * dlm_i(l,m) * dctidux |
414 |
dsiduy = dsiduy + plm_i(l,m)* dPhuncdUy + & |
415 |
Phunc * dlm_i(l,m) * dctiduy |
416 |
dsiduz = dsiduz + plm_i(l,m)* dPhuncdUz + & |
417 |
Phunc * dlm_i(l,m) * dctiduz |
418 |
|
419 |
end do |
420 |
|
421 |
do lm = 1, ShapeMap(me1)%nStrengthFuncs |
422 |
l = ShapeMap(me1)%StrengthFuncLValue(lm) |
423 |
m = ShapeMap(me1)%StrengthFuncMValue(lm) |
424 |
coeff = ShapeMap(me1)%StrengthFuncCoefficient(lm) |
425 |
function_type = ShapeMap(me1)%StrengthFunctionType(lm) |
426 |
|
427 |
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
428 |
Phunc = coeff * tm_i(m) |
429 |
dPhuncdX = coeff * dtm_i(m) * dcpidx |
430 |
dPhuncdY = coeff * dtm_i(m) * dcpidy |
431 |
dPhuncdZ = coeff * dtm_i(m) * dcpidz |
432 |
dPhuncdUz = coeff * dtm_i(m) * dcpidux |
433 |
dPhuncdUy = coeff * dtm_i(m) * dcpiduy |
434 |
dPhuncdUz = coeff * dtm_i(m) * dcpiduz |
435 |
else |
436 |
Phunc = coeff * spi * um_i(m-1) |
437 |
dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1)) |
438 |
dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1)) |
439 |
dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1)) |
440 |
dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1)) |
441 |
dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1)) |
442 |
dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1)) |
443 |
endif |
444 |
|
445 |
eps_i = eps_i + plm_i(l,m)*Phunc |
446 |
|
447 |
depsidx = depsidx + plm_i(l,m)*dPhuncdX + & |
448 |
Phunc * dlm_i(l,m) * dctidx |
449 |
depsidy = depsidy + plm_i(l,m)*dPhuncdY + & |
450 |
Phunc * dlm_i(l,m) * dctidy |
451 |
depsidz = depsidz + plm_i(l,m)*dPhuncdZ + & |
452 |
Phunc * dlm_i(l,m) * dctidz |
453 |
|
454 |
depsidux = depsidux + plm_i(l,m)* dPhuncdUx + & |
455 |
Phunc * dlm_i(l,m) * dctidux |
456 |
depsiduy = depsiduy + plm_i(l,m)* dPhuncdUy + & |
457 |
Phunc * dlm_i(l,m) * dctiduy |
458 |
depsiduz = depsiduz + plm_i(l,m)* dPhuncdUz + & |
459 |
Phunc * dlm_i(l,m) * dctiduz |
460 |
|
461 |
end do |
462 |
|
463 |
endif |
464 |
|
465 |
! now do j: |
466 |
|
467 |
if (ShapeMap(me2)%isLJ) then |
468 |
sigma_j = ShapeMap(me2)%sigma |
469 |
s_j = ShapeMap(me2)%sigma |
470 |
eps_j = ShapeMap(me2)%epsilon |
471 |
dsigmajdx = 0.0d0 |
472 |
dsigmajdy = 0.0d0 |
473 |
dsigmajdz = 0.0d0 |
474 |
dsigmajdux = 0.0d0 |
475 |
dsigmajduy = 0.0d0 |
476 |
dsigmajduz = 0.0d0 |
477 |
dsjdx = 0.0d0 |
478 |
dsjdy = 0.0d0 |
479 |
dsjdz = 0.0d0 |
480 |
dsjdux = 0.0d0 |
481 |
dsjduy = 0.0d0 |
482 |
dsjduz = 0.0d0 |
483 |
depsjdx = 0.0d0 |
484 |
depsjdy = 0.0d0 |
485 |
depsjdz = 0.0d0 |
486 |
depsjdux = 0.0d0 |
487 |
depsjduy = 0.0d0 |
488 |
depsjduz = 0.0d0 |
489 |
else |
490 |
|
491 |
#ifdef IS_MPI |
492 |
! rotate the inter-particle separation into the two different |
493 |
! body-fixed coordinate systems: |
494 |
! negative sign because this is the vector from j to i: |
495 |
|
496 |
xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3)) |
497 |
yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3)) |
498 |
zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3)) |
499 |
#else |
500 |
! rotate the inter-particle separation into the two different |
501 |
! body-fixed coordinate systems: |
502 |
! negative sign because this is the vector from j to i: |
503 |
|
504 |
xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3)) |
505 |
yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3)) |
506 |
zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3)) |
507 |
#endif |
508 |
|
509 |
xj2 = xj*xj |
510 |
yj2 = yj*yj |
511 |
zj2 = zj*zj |
512 |
|
513 |
projj = sqrt(xj2 + yj2) |
514 |
projj3 = projj*projj*projj |
515 |
|
516 |
ctj = zj / rij |
517 |
dctjdx = - zj * xj / r3 |
518 |
dctjdy = - zj * yj / r3 |
519 |
dctjdz = 1.0d0 / rij - zj2 / r3 |
520 |
dctjdux = yj / rij |
521 |
dctjduy = -xj / rij |
522 |
dctjduz = 0.0d0 |
523 |
|
524 |
cpj = xj / projj |
525 |
dcpjdx = 1.0d0 / projj - xj2 / projj3 |
526 |
dcpjdy = - xj * yj / projj3 |
527 |
dcpjdz = 0.0d0 |
528 |
dcpjdux = xj * yj * zj / projj3 |
529 |
dcpjduy = -zj * (1.0d0 / projj - xj2 / projj3) |
530 |
dcpjduz = -yj * (1.0d0 / projj - xj2 / projj3) - (xj2 * yj / projj3) |
531 |
|
532 |
spj = yj / projj |
533 |
dspjdx = - xj * yj / projj3 |
534 |
dspjdy = 1.0d0 / projj - yj2 / projj3 |
535 |
dspjdz = 0.0d0 |
536 |
dspjdux = -zj * (1.0d0 / projj - yj2 / projj3) |
537 |
dspjduy = xj * yj * zj / projj3 |
538 |
dspjduz = xj * (1.0d0 / projj - yi2 / projj3) + (xj * yj2 / projj3) |
539 |
|
540 |
call Associated_Legendre(ctj, ShapeMap(me2)%bigL, & |
541 |
ShapeMap(me2)%bigM, lmax, plm_j, dlm_j) |
542 |
|
543 |
call Orthogonal_Polynomial(cpj, ShapeMap(me2)%bigM, CHEBYSHEV_TN, & |
544 |
tm_j, dtm_j) |
545 |
call Orthogonal_Polynomial(cpj, ShapeMap(me2)%bigM, CHEBYSHEV_UN, & |
546 |
um_j, dum_j) |
547 |
|
548 |
sigma_j = 0.0d0 |
549 |
s_j = 0.0d0 |
550 |
eps_j = 0.0d0 |
551 |
dsigmajdx = 0.0d0 |
552 |
dsigmajdy = 0.0d0 |
553 |
dsigmajdz = 0.0d0 |
554 |
dsigmajdux = 0.0d0 |
555 |
dsigmajduy = 0.0d0 |
556 |
dsigmajduz = 0.0d0 |
557 |
dsjdx = 0.0d0 |
558 |
dsjdy = 0.0d0 |
559 |
dsjdz = 0.0d0 |
560 |
dsjdux = 0.0d0 |
561 |
dsjduy = 0.0d0 |
562 |
dsjduz = 0.0d0 |
563 |
depsjdx = 0.0d0 |
564 |
depsjdy = 0.0d0 |
565 |
depsjdz = 0.0d0 |
566 |
depsjdux = 0.0d0 |
567 |
depsjduy = 0.0d0 |
568 |
depsjduz = 0.0d0 |
569 |
|
570 |
do lm = 1, ShapeMap(me2)%nContactFuncs |
571 |
l = ShapeMap(me2)%ContactFuncLValue(lm) |
572 |
m = ShapeMap(me2)%ContactFuncMValue(lm) |
573 |
coeff = ShapeMap(me2)%ContactFuncCoefficient(lm) |
574 |
function_type = ShapeMap(me2)%ContactFunctionType(lm) |
575 |
|
576 |
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
577 |
Phunc = coeff * tm_j(m) |
578 |
dPhuncdX = coeff * dtm_j(m) * dcpjdx |
579 |
dPhuncdY = coeff * dtm_j(m) * dcpjdy |
580 |
dPhuncdZ = coeff * dtm_j(m) * dcpjdz |
581 |
dPhuncdUz = coeff * dtm_j(m) * dcpjdux |
582 |
dPhuncdUy = coeff * dtm_j(m) * dcpjduy |
583 |
dPhuncdUz = coeff * dtm_j(m) * dcpjduz |
584 |
else |
585 |
Phunc = coeff * spj * um_j(m-1) |
586 |
dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1)) |
587 |
dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1)) |
588 |
dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1)) |
589 |
dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1)) |
590 |
dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1)) |
591 |
dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1)) |
592 |
endif |
593 |
|
594 |
sigma_j = sigma_j + plm_j(l,m)*Phunc |
595 |
|
596 |
dsigmajdx = dsigmajdx + plm_j(l,m)*dPhuncdX + & |
597 |
Phunc * dlm_j(l,m) * dctjdx |
598 |
dsigmajdy = dsigmajdy + plm_j(l,m)*dPhuncdY + & |
599 |
Phunc * dlm_j(l,m) * dctjdy |
600 |
dsigmajdz = dsigmajdz + plm_j(l,m)*dPhuncdZ + & |
601 |
Phunc * dlm_j(l,m) * dctjdz |
602 |
|
603 |
dsigmajdux = dsigmajdux + plm_j(l,m)* dPhuncdUx + & |
604 |
Phunc * dlm_j(l,m) * dctjdux |
605 |
dsigmajduy = dsigmajduy + plm_j(l,m)* dPhuncdUy + & |
606 |
Phunc * dlm_j(l,m) * dctjduy |
607 |
dsigmajduz = dsigmajduz + plm_j(l,m)* dPhuncdUz + & |
608 |
Phunc * dlm_j(l,m) * dctjduz |
609 |
|
610 |
end do |
611 |
|
612 |
do lm = 1, ShapeMap(me2)%nRangeFuncs |
613 |
l = ShapeMap(me2)%RangeFuncLValue(lm) |
614 |
m = ShapeMap(me2)%RangeFuncMValue(lm) |
615 |
coeff = ShapeMap(me2)%RangeFuncCoefficient(lm) |
616 |
function_type = ShapeMap(me2)%RangeFunctionType(lm) |
617 |
|
618 |
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
619 |
Phunc = coeff * tm_j(m) |
620 |
dPhuncdX = coeff * dtm_j(m) * dcpjdx |
621 |
dPhuncdY = coeff * dtm_j(m) * dcpjdy |
622 |
dPhuncdZ = coeff * dtm_j(m) * dcpjdz |
623 |
dPhuncdUz = coeff * dtm_j(m) * dcpjdux |
624 |
dPhuncdUy = coeff * dtm_j(m) * dcpjduy |
625 |
dPhuncdUz = coeff * dtm_j(m) * dcpjduz |
626 |
else |
627 |
Phunc = coeff * spj * um_j(m-1) |
628 |
dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1)) |
629 |
dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1)) |
630 |
dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1)) |
631 |
dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1)) |
632 |
dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1)) |
633 |
dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1)) |
634 |
endif |
635 |
|
636 |
s_j = s_j + plm_j(l,m)*Phunc |
637 |
|
638 |
dsjdx = dsjdx + plm_j(l,m)*dPhuncdX + & |
639 |
Phunc * dlm_j(l,m) * dctjdx |
640 |
dsjdy = dsjdy + plm_j(l,m)*dPhuncdY + & |
641 |
Phunc * dlm_j(l,m) * dctjdy |
642 |
dsjdz = dsjdz + plm_j(l,m)*dPhuncdZ + & |
643 |
Phunc * dlm_j(l,m) * dctjdz |
644 |
|
645 |
dsjdux = dsjdux + plm_j(l,m)* dPhuncdUx + & |
646 |
Phunc * dlm_j(l,m) * dctjdux |
647 |
dsjduy = dsjduy + plm_j(l,m)* dPhuncdUy + & |
648 |
Phunc * dlm_j(l,m) * dctjduy |
649 |
dsjduz = dsjduz + plm_j(l,m)* dPhuncdUz + & |
650 |
Phunc * dlm_j(l,m) * dctjduz |
651 |
|
652 |
end do |
653 |
|
654 |
do lm = 1, ShapeMap(me2)%nStrengthFuncs |
655 |
l = ShapeMap(me2)%StrengthFuncLValue(lm) |
656 |
m = ShapeMap(me2)%StrengthFuncMValue(lm) |
657 |
coeff = ShapeMap(me2)%StrengthFuncCoefficient(lm) |
658 |
function_type = ShapeMap(me2)%StrengthFunctionType(lm) |
659 |
|
660 |
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
661 |
Phunc = coeff * tm_j(m) |
662 |
dPhuncdX = coeff * dtm_j(m) * dcpjdx |
663 |
dPhuncdY = coeff * dtm_j(m) * dcpjdy |
664 |
dPhuncdZ = coeff * dtm_j(m) * dcpjdz |
665 |
dPhuncdUz = coeff * dtm_j(m) * dcpjdux |
666 |
dPhuncdUy = coeff * dtm_j(m) * dcpjduy |
667 |
dPhuncdUz = coeff * dtm_j(m) * dcpjduz |
668 |
else |
669 |
Phunc = coeff * spj * um_j(m-1) |
670 |
dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1)) |
671 |
dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1)) |
672 |
dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1)) |
673 |
dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1)) |
674 |
dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1)) |
675 |
dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1)) |
676 |
endif |
677 |
|
678 |
eps_j = eps_j + plm_j(l,m)*Phunc |
679 |
|
680 |
depsjdx = depsjdx + plm_j(l,m)*dPhuncdX + & |
681 |
Phunc * dlm_j(l,m) * dctjdx |
682 |
depsjdy = depsjdy + plm_j(l,m)*dPhuncdY + & |
683 |
Phunc * dlm_j(l,m) * dctjdy |
684 |
depsjdz = depsjdz + plm_j(l,m)*dPhuncdZ + & |
685 |
Phunc * dlm_j(l,m) * dctjdz |
686 |
|
687 |
depsjdux = depsjdux + plm_j(l,m)* dPhuncdUx + & |
688 |
Phunc * dlm_j(l,m) * dctjdux |
689 |
depsjduy = depsjduy + plm_j(l,m)* dPhuncdUy + & |
690 |
Phunc * dlm_j(l,m) * dctjduy |
691 |
depsjduz = depsjduz + plm_j(l,m)* dPhuncdUz + & |
692 |
Phunc * dlm_j(l,m) * dctjduz |
693 |
|
694 |
end do |
695 |
|
696 |
endif |
697 |
|
698 |
! phew, now let's assemble the potential energy: |
699 |
|
700 |
sigma = 0.5*(sigma_i + sigma_j) |
701 |
|
702 |
dsigmadxi = 0.5*dsigmaidx |
703 |
dsigmadyi = 0.5*dsigmaidy |
704 |
dsigmadzi = 0.5*dsigmaidz |
705 |
dsigmaduxi = 0.5*dsigmaidux |
706 |
dsigmaduyi = 0.5*dsigmaiduy |
707 |
dsigmaduzi = 0.5*dsigmaiduz |
708 |
|
709 |
dsigmadxj = 0.5*dsigmajdx |
710 |
dsigmadyj = 0.5*dsigmajdy |
711 |
dsigmadzj = 0.5*dsigmajdz |
712 |
dsigmaduxj = 0.5*dsigmajdux |
713 |
dsigmaduyj = 0.5*dsigmajduy |
714 |
dsigmaduzj = 0.5*dsigmajduz |
715 |
|
716 |
s = 0.5*(s_i + s_j) |
717 |
|
718 |
dsdxi = 0.5*dsidx |
719 |
dsdyi = 0.5*dsidy |
720 |
dsdzi = 0.5*dsidz |
721 |
dsduxi = 0.5*dsidux |
722 |
dsduyi = 0.5*dsiduy |
723 |
dsduzi = 0.5*dsiduz |
724 |
|
725 |
dsdxj = 0.5*dsjdx |
726 |
dsdyj = 0.5*dsjdy |
727 |
dsdzj = 0.5*dsjdz |
728 |
dsduxj = 0.5*dsjdux |
729 |
dsduyj = 0.5*dsjduy |
730 |
dsduzj = 0.5*dsjduz |
731 |
|
732 |
eps = sqrt(eps_i * eps_j) |
733 |
|
734 |
depsdxi = eps_j * depsidx / (2.0d0 * eps) |
735 |
depsdyi = eps_j * depsidy / (2.0d0 * eps) |
736 |
depsdzi = eps_j * depsidz / (2.0d0 * eps) |
737 |
depsduxi = eps_j * depsidux / (2.0d0 * eps) |
738 |
depsduyi = eps_j * depsiduy / (2.0d0 * eps) |
739 |
depsduzi = eps_j * depsiduz / (2.0d0 * eps) |
740 |
|
741 |
depsdxj = eps_i * depsjdx / (2.0d0 * eps) |
742 |
depsdyj = eps_i * depsjdy / (2.0d0 * eps) |
743 |
depsdzj = eps_i * depsjdz / (2.0d0 * eps) |
744 |
depsduxj = eps_i * depsjdux / (2.0d0 * eps) |
745 |
depsduyj = eps_i * depsjduy / (2.0d0 * eps) |
746 |
depsduzj = eps_i * depsjduz / (2.0d0 * eps) |
747 |
|
748 |
rtdenom = rij-sigma+s |
749 |
rt = s / rtdenom |
750 |
|
751 |
drtdxi = (dsdxi + rt * (drdxi - dsigmadxi + dsdxi)) / rtdenom |
752 |
drtdyi = (dsdyi + rt * (drdyi - dsigmadyi + dsdyi)) / rtdenom |
753 |
drtdzi = (dsdzi + rt * (drdzi - dsigmadzi + dsdzi)) / rtdenom |
754 |
drtduxi = (dsduxi + rt * (drduxi - dsigmaduxi + dsduxi)) / rtdenom |
755 |
drtduyi = (dsduyi + rt * (drduyi - dsigmaduyi + dsduyi)) / rtdenom |
756 |
drtduzi = (dsduzi + rt * (drduzi - dsigmaduzi + dsduzi)) / rtdenom |
757 |
drtdxj = (dsdxj + rt * (drdxj - dsigmadxj + dsdxj)) / rtdenom |
758 |
drtdyj = (dsdyj + rt * (drdyj - dsigmadyj + dsdyj)) / rtdenom |
759 |
drtdzj = (dsdzj + rt * (drdzj - dsigmadzj + dsdzj)) / rtdenom |
760 |
drtduxj = (dsduxj + rt * (drduxj - dsigmaduxj + dsduxj)) / rtdenom |
761 |
drtduyj = (dsduyj + rt * (drduyj - dsigmaduyj + dsduyj)) / rtdenom |
762 |
drtduzj = (dsduzj + rt * (drduzj - dsigmaduzj + dsduzj)) / rtdenom |
763 |
|
764 |
rt2 = rt*rt |
765 |
rt3 = rt2*rt |
766 |
rt5 = rt2*rt3 |
767 |
rt6 = rt3*rt3 |
768 |
rt11 = rt5*rt6 |
769 |
rt12 = rt6*rt6 |
770 |
rt126 = rt12 - rt6 |
771 |
|
772 |
if (do_pot) then |
773 |
#ifdef IS_MPI |
774 |
pot_row(atom1) = pot_row(atom1) + 2.0d0*eps*rt126*sw |
775 |
pot_col(atom2) = pot_col(atom2) + 2.0d0*eps*rt126*sw |
776 |
#else |
777 |
pot = pot + 4.0d0*eps*rt126*sw |
778 |
#endif |
779 |
endif |
780 |
|
781 |
dvdxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxi + 4.0d0*depsdxi*rt126 |
782 |
dvdyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyi + 4.0d0*depsdyi*rt126 |
783 |
dvdzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzi + 4.0d0*depsdzi*rt126 |
784 |
dvduxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxi + 4.0d0*depsduxi*rt126 |
785 |
dvduyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyi + 4.0d0*depsduyi*rt126 |
786 |
dvduzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzi + 4.0d0*depsduzi*rt126 |
787 |
|
788 |
dvdxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxj + 4.0d0*depsdxj*rt126 |
789 |
dvdyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyj + 4.0d0*depsdyj*rt126 |
790 |
dvdzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzj + 4.0d0*depsdzj*rt126 |
791 |
dvduxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxj + 4.0d0*depsduxj*rt126 |
792 |
dvduyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyj + 4.0d0*depsduyj*rt126 |
793 |
dvduzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzj + 4.0d0*depsduzj*rt126 |
794 |
|
795 |
! do the torques first since they are easy: |
796 |
! remember that these are still in the body fixed axes |
797 |
|
798 |
txi = dvduxi * sw |
799 |
tyi = dvduyi * sw |
800 |
tzi = dvduzi * sw |
801 |
|
802 |
txj = dvduxj * sw |
803 |
tyj = dvduyj * sw |
804 |
tzj = dvduzj * sw |
805 |
|
806 |
! go back to lab frame using transpose of rotation matrix: |
807 |
|
808 |
#ifdef IS_MPI |
809 |
t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + & |
810 |
a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi |
811 |
t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + & |
812 |
a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi |
813 |
t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + & |
814 |
a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi |
815 |
|
816 |
t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + & |
817 |
a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj |
818 |
t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + & |
819 |
a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj |
820 |
t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + & |
821 |
a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj |
822 |
#else |
823 |
t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi |
824 |
t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi |
825 |
t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi |
826 |
|
827 |
t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj |
828 |
t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj |
829 |
t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj |
830 |
#endif |
831 |
! Now, on to the forces: |
832 |
|
833 |
! first rotate the i terms back into the lab frame: |
834 |
|
835 |
fxi = dvdxi * sw |
836 |
fyi = dvdyi * sw |
837 |
fzi = dvdzi * sw |
838 |
|
839 |
fxj = dvdxj * sw |
840 |
fyj = dvdyj * sw |
841 |
fzj = dvdzj * sw |
842 |
|
843 |
#ifdef IS_MPI |
844 |
fxii = a_Row(1,atom1)*fxi + a_Row(4,atom1)*fyi + a_Row(7,atom1)*fzi |
845 |
fyii = a_Row(2,atom1)*fxi + a_Row(5,atom1)*fyi + a_Row(8,atom1)*fzi |
846 |
fzii = a_Row(3,atom1)*fxi + a_Row(6,atom1)*fyi + a_Row(9,atom1)*fzi |
847 |
|
848 |
fxjj = a_Col(1,atom2)*fxj + a_Col(4,atom2)*fyj + a_Col(7,atom2)*fzj |
849 |
fyjj = a_Col(2,atom2)*fxj + a_Col(5,atom2)*fyj + a_Col(8,atom2)*fzj |
850 |
fzjj = a_Col(3,atom2)*fxj + a_Col(6,atom2)*fyj + a_Col(9,atom2)*fzj |
851 |
#else |
852 |
fxii = a(1,atom1)*fxi + a(4,atom1)*fyi + a(7,atom1)*fzi |
853 |
fyii = a(2,atom1)*fxi + a(5,atom1)*fyi + a(8,atom1)*fzi |
854 |
fzii = a(3,atom1)*fxi + a(6,atom1)*fyi + a(9,atom1)*fzi |
855 |
|
856 |
fxjj = a(1,atom2)*fxj + a(4,atom2)*fyj + a(7,atom2)*fzj |
857 |
fyjj = a(2,atom2)*fxj + a(5,atom2)*fyj + a(8,atom2)*fzj |
858 |
fzjj = a(3,atom2)*fxj + a(6,atom2)*fyj + a(9,atom2)*fzj |
859 |
#endif |
860 |
|
861 |
fxij = -fxii |
862 |
fyij = -fyii |
863 |
fzij = -fzii |
864 |
|
865 |
fxji = -fxjj |
866 |
fyji = -fyjj |
867 |
fzji = -fzjj |
868 |
|
869 |
fxradial = fxii + fxji |
870 |
fyradial = fyii + fyji |
871 |
fzradial = fzii + fzji |
872 |
|
873 |
#ifdef IS_MPI |
874 |
f_Row(1,atom1) = f_Row(1,atom1) + fxradial |
875 |
f_Row(2,atom1) = f_Row(2,atom1) + fyradial |
876 |
f_Row(3,atom1) = f_Row(3,atom1) + fzradial |
877 |
|
878 |
f_Col(1,atom2) = f_Col(1,atom2) - fxradial |
879 |
f_Col(2,atom2) = f_Col(2,atom2) - fyradial |
880 |
f_Col(3,atom2) = f_Col(3,atom2) - fzradial |
881 |
#else |
882 |
f(1,atom1) = f(1,atom1) + fxradial |
883 |
f(2,atom1) = f(2,atom1) + fyradial |
884 |
f(3,atom1) = f(3,atom1) + fzradial |
885 |
|
886 |
f(1,atom2) = f(1,atom2) - fxradial |
887 |
f(2,atom2) = f(2,atom2) - fyradial |
888 |
f(3,atom2) = f(3,atom2) - fzradial |
889 |
#endif |
890 |
|
891 |
#ifdef IS_MPI |
892 |
id1 = AtomRowToGlobal(atom1) |
893 |
id2 = AtomColToGlobal(atom2) |
894 |
#else |
895 |
id1 = atom1 |
896 |
id2 = atom2 |
897 |
#endif |
898 |
|
899 |
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
900 |
|
901 |
fpair(1) = fpair(1) + fxradial |
902 |
fpair(2) = fpair(2) + fyradial |
903 |
fpair(3) = fpair(3) + fzradial |
904 |
|
905 |
endif |
906 |
|
907 |
end subroutine do_shape_pair |
908 |
|
909 |
SUBROUTINE Associated_Legendre(x, l, m, lmax, plm, dlm) |
910 |
|
911 |
! Purpose: Compute the associated Legendre functions |
912 |
! Plm(x) and their derivatives Plm'(x) |
913 |
! Input : x --- Argument of Plm(x) |
914 |
! l --- Order of Plm(x), l = 0,1,2,...,n |
915 |
! m --- Degree of Plm(x), m = 0,1,2,...,N |
916 |
! lmax --- Physical dimension of PLM and DLM |
917 |
! Output: PLM(l,m) --- Plm(x) |
918 |
! DLM(l,m) --- Plm'(x) |
919 |
! |
920 |
! adapted from the routines in |
921 |
! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin |
922 |
! ISBN 0-471-11963-6 |
923 |
! |
924 |
! The original Fortran77 codes can be found here: |
925 |
! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html |
926 |
|
927 |
real (kind=8), intent(in) :: x |
928 |
integer, intent(in) :: l, m, lmax |
929 |
real (kind=8), dimension(0:lmax,0:m), intent(out) :: PLM, DLM |
930 |
integer :: i, j, ls |
931 |
real (kind=8) :: xq, xs |
932 |
|
933 |
! zero out both arrays: |
934 |
DO I = 0, m |
935 |
DO J = 0, l |
936 |
PLM(J,I) = 0.0D0 |
937 |
DLM(J,I) = 0.0D0 |
938 |
end DO |
939 |
end DO |
940 |
|
941 |
! start with 0,0: |
942 |
PLM(0,0) = 1.0D0 |
943 |
|
944 |
! x = +/- 1 functions are easy: |
945 |
IF (abs(X).EQ.1.0D0) THEN |
946 |
DO I = 1, m |
947 |
PLM(0, I) = X**I |
948 |
DLM(0, I) = 0.5D0*I*(I+1.0D0)*X**(I+1) |
949 |
end DO |
950 |
DO J = 1, m |
951 |
DO I = 1, l |
952 |
IF (I.EQ.1) THEN |
953 |
DLM(I, J) = 1.0D+300 |
954 |
ELSE IF (I.EQ.2) THEN |
955 |
DLM(I, J) = -0.25D0*(J+2)*(J+1)*J*(J-1)*X**(J+1) |
956 |
ENDIF |
957 |
end DO |
958 |
end DO |
959 |
RETURN |
960 |
ENDIF |
961 |
|
962 |
LS = 1 |
963 |
IF (abs(X).GT.1.0D0) LS = -1 |
964 |
XQ = sqrt(LS*(1.0D0-X*X)) |
965 |
XS = LS*(1.0D0-X*X) |
966 |
|
967 |
DO I = 1, l |
968 |
PLM(I, I) = -LS*(2.0D0*I-1.0D0)*XQ*PLM(I-1, I-1) |
969 |
enddo |
970 |
|
971 |
DO I = 0, l |
972 |
PLM(I, I+1)=(2.0D0*I+1.0D0)*X*PLM(I, I) |
973 |
enddo |
974 |
|
975 |
DO I = 0, l |
976 |
DO J = I+2, m |
977 |
PLM(I, J)=((2.0D0*J-1.0D0)*X*PLM(I,J-1) - & |
978 |
(I+J-1.0D0)*PLM(I,J-2))/(J-I) |
979 |
end DO |
980 |
end DO |
981 |
|
982 |
DLM(0, 0)=0.0D0 |
983 |
|
984 |
DO J = 1, m |
985 |
DLM(0, J)=LS*J*(PLM(0,J-1)-X*PLM(0,J))/XS |
986 |
end DO |
987 |
|
988 |
DO I = 1, l |
989 |
DO J = I, m |
990 |
DLM(I,J) = LS*I*X*PLM(I, J)/XS + (J+I)*(J-I+1.0D0)/XQ*PLM(I-1, J) |
991 |
end DO |
992 |
end DO |
993 |
|
994 |
RETURN |
995 |
END SUBROUTINE Associated_Legendre |
996 |
|
997 |
|
998 |
subroutine Orthogonal_Polynomial(x, m, function_type, pl, dpl) |
999 |
|
1000 |
! Purpose: Compute orthogonal polynomials: Tn(x) or Un(x), |
1001 |
! or Ln(x) or Hn(x), and their derivatives |
1002 |
! Input : function_type --- Function code |
1003 |
! =1 for Chebyshev polynomial Tn(x) |
1004 |
! =2 for Chebyshev polynomial Un(x) |
1005 |
! =3 for Laguerre polynomial Ln(x) |
1006 |
! =4 for Hermite polynomial Hn(x) |
1007 |
! n --- Order of orthogonal polynomials |
1008 |
! x --- Argument of orthogonal polynomials |
1009 |
! Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x) |
1010 |
! DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or Hn'(x) |
1011 |
! |
1012 |
! adapted from the routines in |
1013 |
! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin |
1014 |
! ISBN 0-471-11963-6 |
1015 |
! |
1016 |
! The original Fortran77 codes can be found here: |
1017 |
! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html |
1018 |
|
1019 |
real(kind=8), intent(in) :: x |
1020 |
integer, intent(in):: m |
1021 |
integer, intent(in):: function_type |
1022 |
real(kind=8), dimension(0:m), intent(inout) :: pl, dpl |
1023 |
|
1024 |
real(kind=8) :: a, b, c, y0, y1, dy0, dy1, yn, dyn |
1025 |
integer :: k |
1026 |
|
1027 |
A = 2.0D0 |
1028 |
B = 0.0D0 |
1029 |
C = 1.0D0 |
1030 |
Y0 = 1.0D0 |
1031 |
Y1 = 2.0D0*X |
1032 |
DY0 = 0.0D0 |
1033 |
DY1 = 2.0D0 |
1034 |
PL(0) = 1.0D0 |
1035 |
PL(1) = 2.0D0*X |
1036 |
DPL(0) = 0.0D0 |
1037 |
DPL(1) = 2.0D0 |
1038 |
IF (function_type.EQ.CHEBYSHEV_TN) THEN |
1039 |
Y1 = X |
1040 |
DY1 = 1.0D0 |
1041 |
PL(1) = X |
1042 |
DPL(1) = 1.0D0 |
1043 |
ELSE IF (function_type.EQ.LAGUERRE) THEN |
1044 |
Y1 = 1.0D0-X |
1045 |
DY1 = -1.0D0 |
1046 |
PL(1) = 1.0D0-X |
1047 |
DPL(1) = -1.0D0 |
1048 |
ENDIF |
1049 |
DO K = 2, m |
1050 |
IF (function_type.EQ.LAGUERRE) THEN |
1051 |
A = -1.0D0/K |
1052 |
B = 2.0D0+A |
1053 |
C = 1.0D0+A |
1054 |
ELSE IF (function_type.EQ.HERMITE) THEN |
1055 |
C = 2.0D0*(K-1.0D0) |
1056 |
ENDIF |
1057 |
YN = (A*X+B)*Y1-C*Y0 |
1058 |
DYN = A*Y1+(A*X+B)*DY1-C*DY0 |
1059 |
PL(K) = YN |
1060 |
DPL(K) = DYN |
1061 |
Y0 = Y1 |
1062 |
Y1 = YN |
1063 |
DY0 = DY1 |
1064 |
DY1 = DYN |
1065 |
end DO |
1066 |
RETURN |
1067 |
|
1068 |
end subroutine Orthogonal_Polynomial |
1069 |
|
1070 |
end module shapes |