ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/calc_sticky_pair.F90
Revision: 394
Committed: Mon Mar 24 21:55:34 2003 UTC (21 years, 3 months ago) by gezelter
File size: 12757 byte(s)
Log Message:
electrostatic changes for dipole / RF separation

File Contents

# User Rev Content
1 mmeineke 377 !! This Module Calculates forces due to SSD potential and VDW interactions
2     !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
3    
4     !! This module contains the Public procedures:
5    
6    
7     !! Corresponds to the force field defined in ssd_FF.cpp
8     !! @author Charles F. Vardeman II
9     !! @author Matthew Meineke
10     !! @author Christopher Fennel
11     !! @author J. Daniel Gezelter
12 gezelter 394 !! @version $Id: calc_sticky_pair.F90,v 1.2 2003-03-24 21:55:34 gezelter Exp $, $Date: 2003-03-24 21:55:34 $, $Name: not supported by cvs2svn $, $Revision: 1.2 $
13 mmeineke 377
14     module sticky_pair
15    
16     use force_globals
17     use definitions
18     #ifdef IS_MPI
19     use mpiSimulation
20     #endif
21    
22     implicit none
23    
24     PRIVATE
25    
26     logical, save :: sticky_initialized = .false.
27     real( kind = dp ), save :: SSD_w0
28     real( kind = dp ), save :: SSD_v0
29     real( kind = dp ), save :: SSD_rl
30     real( kind = dp ), save :: SSD_ru
31     real( kind = dp ), save :: SSD_rup
32    
33     public :: check_sticky_FF
34     public :: set_sticky_params
35     public :: do_sticky_pair
36    
37     contains
38    
39     subroutine check_sticky_FF(status)
40     integer :: status
41     status = -1
42     if (sticky_initialized) status = 0
43     return
44     end subroutine check_sticky_FF
45    
46     subroutine set_sticky_params(sticky_w0, sticky_v0)
47     real( kind = dp ), intent(in) :: sticky_w0, sticky_v0
48    
49     ! we could pass all 5 parameters if we felt like it...
50    
51     SSD_w0 = sticky_w0
52     SSD_v0 = sticky_v0
53     SSD_rl = 2.75_DP
54     SSD_ru = 3.35_DP
55     SSD_rup = 4.0_DP
56    
57     sticky_initialized = .true.
58     return
59     end subroutine set_sticky_params
60    
61     subroutine do_sticky_pair(atom1, atom2, d, rij, r2, A, pot, f, t, &
62     do_pot, do_stress)
63    
64     !! This routine does only the sticky portion of the SSD potential
65     !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
66     !! The Lennard-Jones and dipolar interaction must be handled separately.
67    
68     !! We assume that the rotation matrices have already been calculated
69     !! and placed in the A array.
70    
71     !! i and j are pointers to the two SSD atoms
72    
73     integer, intent(in) :: atom1, atom2
74     real (kind=dp), intent(inout) :: rij, r2
75     real (kind=dp), dimension(3), intent(in) :: d
76     real (kind=dp) :: pot
77     real (kind=dp), dimension(:,:) :: A
78     real (kind=dp), dimension(:,:) :: f
79     real (kind=dp), dimension(:,:) :: t
80     logical, intent(in) :: do_pot, do_stress
81    
82     real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
83     real (kind=dp) :: r3, r5, r6, s, sp, dsdr, dspdr
84     real (kind=dp) :: wi, wj, w, wip, wjp, wp
85     real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz
86     real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz
87     real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz
88     real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz
89     real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj
90     real (kind=dp) :: drdx, drdy, drdz
91     real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
92     real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
93     real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji
94     real (kind=dp) :: fxradial, fyradial, fzradial
95 gezelter 394 real (kind=dp) :: rijtest, rjitest
96 mmeineke 377
97     if (.not.sticky_initialized) then
98     write(*,*) 'Sticky forces not initialized!'
99     return
100     endif
101    
102     r3 = r2*rij
103     r5 = r3*r2
104    
105     drdx = d(1) / rij
106     drdy = d(2) / rij
107     drdz = d(3) / rij
108    
109     #ifdef IS_MPI
110     ! rotate the inter-particle separation into the two different
111     ! body-fixed coordinate systems:
112    
113     xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
114     yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
115     zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
116    
117     ! negative sign because this is the vector from j to i:
118    
119     xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
120     yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
121     zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
122     #else
123     ! rotate the inter-particle separation into the two different
124     ! body-fixed coordinate systems:
125    
126     xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
127     yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
128     zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
129    
130     ! negative sign because this is the vector from j to i:
131    
132     xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
133     yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
134     zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
135     #endif
136    
137     xi2 = xi*xi
138     yi2 = yi*yi
139     zi2 = zi*zi
140    
141     xj2 = xj*xj
142     yj2 = yj*yj
143     zj2 = zj*zj
144 gezelter 394
145 mmeineke 377 call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
146    
147     wi = 2.0d0*(xi2-yi2)*zi / r3
148     wj = 2.0d0*(xj2-yj2)*zj / r3
149     w = wi+wj
150    
151     zif = zi/rij - 0.6d0
152     zis = zi/rij + 0.8d0
153    
154     zjf = zj/rij - 0.6d0
155     zjs = zj/rij + 0.8d0
156    
157     wip = zif*zif*zis*zis - SSD_w0
158     wjp = zjf*zjf*zjs*zjs - SSD_w0
159     wp = wip + wjp
160    
161     if (do_pot) then
162     #ifdef IS_MPI
163     pot_row(atom1) = pot_row(atom1) + 0.25d0*SSD_v0*(s*w + sp*wp)
164     pot_col(atom2) = pot_col(atom2) + 0.25d0*SSD_v0*(s*w + sp*wp)
165     #else
166     pot = pot + 0.5d0*SSD_v0*(s*w + sp*wp)
167     #endif
168     endif
169    
170     dwidx = 4.0d0*xi*zi/r3 - 6.0d0*xi*zi*(xi2-yi2)/r5
171     dwidy = - 4.0d0*yi*zi/r3 - 6.0d0*yi*zi*(xi2-yi2)/r5
172     dwidz = 2.0d0*(xi2-yi2)/r3 - 6.0d0*zi2*(xi2-yi2)/r5
173    
174     dwjdx = 4.0d0*xj*zj/r3 - 6.0d0*xj*zj*(xj2-yj2)/r5
175     dwjdy = - 4.0d0*yj*zj/r3 - 6.0d0*yj*zj*(xj2-yj2)/r5
176     dwjdz = 2.0d0*(xj2-yj2)/r3 - 6.0d0*zj2*(xj2-yj2)/r5
177    
178     uglyi = zif*zif*zis + zif*zis*zis
179     uglyj = zjf*zjf*zjs + zjf*zjs*zjs
180    
181     dwipdx = -2.0d0*xi*zi*uglyi/r3
182     dwipdy = -2.0d0*yi*zi*uglyi/r3
183     dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
184    
185     dwjpdx = -2.0d0*xj*zj*uglyj/r3
186     dwjpdy = -2.0d0*yj*zj*uglyj/r3
187     dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
188    
189     dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3
190     dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3
191     dwiduz = - 8.0d0*xi*yi*zi/r3
192    
193     dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3
194     dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3
195     dwjduz = - 8.0d0*xj*yj*zj/r3
196    
197     dwipdux = 2.0d0*yi*uglyi/rij
198     dwipduy = -2.0d0*xi*uglyi/rij
199     dwipduz = 0.0d0
200    
201     dwjpdux = 2.0d0*yj*uglyj/rij
202     dwjpduy = -2.0d0*xj*uglyj/rij
203     dwjpduz = 0.0d0
204    
205     ! do the torques first since they are easy:
206     ! remember that these are still in the body fixed axes
207    
208     txi = 0.5d0*SSD_v0*(s*dwidux + sp*dwipdux)
209     tyi = 0.5d0*SSD_v0*(s*dwiduy + sp*dwipduy)
210     tzi = 0.5d0*SSD_v0*(s*dwiduz + sp*dwipduz)
211    
212     txj = 0.5d0*SSD_v0*(s*dwjdux + sp*dwjpdux)
213     tyj = 0.5d0*SSD_v0*(s*dwjduy + sp*dwjpduy)
214     tzj = 0.5d0*SSD_v0*(s*dwjduz + sp*dwjpduz)
215    
216     ! go back to lab frame using transpose of rotation matrix:
217    
218     #ifdef IS_MPI
219     t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
220     a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
221     t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
222     a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
223     t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
224     a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
225    
226     t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
227     a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
228     t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
229     a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
230     t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
231     a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
232     #else
233     t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
234     t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
235     t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
236    
237     t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
238     t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
239     t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
240     #endif
241     ! Now, on to the forces:
242    
243     ! first rotate the i terms back into the lab frame:
244    
245     #ifdef IS_MPI
246     fxii = a_Row(1,atom1)*(s*dwidx+sp*dwipdx) + &
247     a_Row(4,atom1)*(s*dwidy+sp*dwipdy) + &
248     a_Row(7,atom1)*(s*dwidz+sp*dwipdz)
249     fyii = a_Row(2,atom1)*(s*dwidx+sp*dwipdx) + &
250     a_Row(5,atom1)*(s*dwidy+sp*dwipdy) + &
251     a_Row(8,atom1)*(s*dwidz+sp*dwipdz)
252     fzii = a_Row(3,atom1)*(s*dwidx+sp*dwipdx) + &
253     a_Row(6,atom1)*(s*dwidy+sp*dwipdy) + &
254     a_Row(9,atom1)*(s*dwidz+sp*dwipdz)
255    
256     fxjj = a_Col(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
257     a_Col(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
258     a_Col(7,atom2)*(s*dwjdz+sp*dwjpdz)
259     fyjj = a_Col(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
260     a_Col(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
261     a_Col(8,atom2)*(s*dwjdz+sp*dwjpdz)
262     fzjj = a_Col(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
263     a_Col(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
264     a_Col(9,atom2)*(s*dwjdz+sp*dwjpdz)
265     #else
266     fxii = a(1,atom1)*(s*dwidx+sp*dwipdx) + &
267     a(4,atom1)*(s*dwidy+sp*dwipdy) + &
268     a(7,atom1)*(s*dwidz+sp*dwipdz)
269     fyii = a(2,atom1)*(s*dwidx+sp*dwipdx) + &
270     a(5,atom1)*(s*dwidy+sp*dwipdy) + &
271     a(8,atom1)*(s*dwidz+sp*dwipdz)
272     fzii = a(3,atom1)*(s*dwidx+sp*dwipdx) + &
273     a(6,atom1)*(s*dwidy+sp*dwipdy) + &
274     a(9,atom1)*(s*dwidz+sp*dwipdz)
275    
276     fxjj = a(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
277     a(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
278     a(7,atom2)*(s*dwjdz+sp*dwjpdz)
279     fyjj = a(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
280     a(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
281     a(8,atom2)*(s*dwjdz+sp*dwjpdz)
282     fzjj = a(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
283     a(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
284     a(9,atom2)*(s*dwjdz+sp*dwjpdz)
285     #endif
286    
287     fxij = -fxii
288     fyij = -fyii
289     fzij = -fzii
290    
291     fxji = -fxjj
292     fyji = -fyjj
293     fzji = -fzjj
294    
295     ! now assemble these with the radial-only terms:
296    
297     fxradial = 0.5d0*SSD_v0*(dsdr*drdx*w + dspdr*drdx*wp + fxii + fxji)
298     fyradial = 0.5d0*SSD_v0*(dsdr*drdy*w + dspdr*drdy*wp + fyii + fyji)
299     fzradial = 0.5d0*SSD_v0*(dsdr*drdz*w + dspdr*drdz*wp + fzii + fzji)
300    
301     #ifdef IS_MPI
302     f_Row(1,atom1) = f_Row(1,atom1) + fxradial
303     f_Row(2,atom1) = f_Row(2,atom1) + fyradial
304     f_Row(3,atom1) = f_Row(3,atom1) + fzradial
305    
306     f_Col(1,atom2) = f_Col(1,atom2) + 0.5d0*SSD_v0*(-dsdr*drdx*w - &
307     dspdr*drdx*wp + fxjj + fxij)
308     f_Col(2,atom2) = f_Col(2,atom2) + 0.5d0*SSD_v0*(-dsdr*drdy*w - &
309     dspdr*drdy*wp + fyjj + fyij)
310     f_Col(3,atom2) = f_Col(3,atom2) + 0.5d0*SSD_v0*(-dsdr*drdz*w - &
311     dspdr*drdz*wp + fzjj + fzij)
312     #else
313     f(1,atom1) = f(1,atom1) + fxradial
314     f(2,atom1) = f(2,atom1) + fyradial
315     f(3,atom1) = f(3,atom1) + fzradial
316    
317     f(1,atom2) = f(1,atom2) + 0.5d0*SSD_v0*(-dsdr*drdx*w - dspdr*drdx*wp + &
318     fxjj + fxij)
319     f(2,atom2) = f(2,atom2) + 0.5d0*SSD_v0*(-dsdr*drdy*w - dspdr*drdy*wp + &
320     fyjj + fyij)
321     f(3,atom2) = f(3,atom2) + 0.5d0*SSD_v0*(-dsdr*drdz*w - dspdr*drdz*wp + &
322     fzjj + fzij)
323     #endif
324    
325     if (do_stress) then
326     tau_Temp(1) = tau_Temp(1) + fxradial * d(1)
327     tau_Temp(2) = tau_Temp(2) + fxradial * d(2)
328     tau_Temp(3) = tau_Temp(3) + fxradial * d(3)
329     tau_Temp(4) = tau_Temp(4) + fyradial * d(1)
330     tau_Temp(5) = tau_Temp(5) + fyradial * d(2)
331     tau_Temp(6) = tau_Temp(6) + fyradial * d(3)
332     tau_Temp(7) = tau_Temp(7) + fzradial * d(1)
333     tau_Temp(8) = tau_Temp(8) + fzradial * d(2)
334     tau_Temp(9) = tau_Temp(9) + fzradial * d(3)
335     virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
336     endif
337    
338     end subroutine do_sticky_pair
339    
340     !! calculates the switching functions and their derivatives for a given
341     subroutine calc_sw_fnc(r, s, sp, dsdr, dspdr)
342    
343     real (kind=dp), intent(in) :: r
344     real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr
345    
346     ! distances must be in angstroms
347    
348     if (r.lt.SSD_rl) then
349     s = 1.0d0
350     sp = 1.0d0
351     dsdr = 0.0d0
352     dspdr = 0.0d0
353     elseif (r.gt.SSD_rup) then
354     s = 0.0d0
355     sp = 0.0d0
356     dsdr = 0.0d0
357     dspdr = 0.0d0
358     else
359     sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_rup-r)**2) / &
360     ((SSD_rup - SSD_rl)**3)
361     dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rl)/((SSD_rup - SSD_rl)**3)
362    
363     if (r.gt.SSD_ru) then
364     s = 0.0d0
365     dsdr = 0.0d0
366     else
367     s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
368     ((SSD_ru - SSD_rl)**3)
369     dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
370     endif
371     endif
372    
373     return
374     end subroutine calc_sw_fnc
375     end module sticky_pair