ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/calc_sticky_pair.F90
(Generate patch)

Comparing trunk/OOPSE/libmdtools/calc_sticky_pair.F90 (file contents):
Revision 483 by gezelter, Wed Apr 9 04:06:43 2003 UTC vs.
Revision 1160 by gezelter, Tue May 11 21:31:15 2004 UTC

# Line 9 | Line 9
9   !! @author Matthew Meineke
10   !! @author Christopher Fennel
11   !! @author J. Daniel Gezelter
12 < !! @version $Id: calc_sticky_pair.F90,v 1.8 2003-04-09 04:06:43 gezelter Exp $, $Date: 2003-04-09 04:06:43 $, $Name: not supported by cvs2svn $, $Revision: 1.8 $
12 > !! @version $Id: calc_sticky_pair.F90,v 1.18 2004-05-11 21:31:14 gezelter Exp $, $Date: 2004-05-11 21:31:14 $, $Name: not supported by cvs2svn $, $Revision: 1.18 $
13  
14   module sticky_pair
15  
# Line 27 | Line 27 | module sticky_pair
27    logical, save :: sticky_initialized = .false.
28    real( kind = dp ), save :: SSD_w0 = 0.0_dp
29    real( kind = dp ), save :: SSD_v0 = 0.0_dp
30 +  real( kind = dp ), save :: SSD_v0p = 0.0_dp
31    real( kind = dp ), save :: SSD_rl = 0.0_dp
32    real( kind = dp ), save :: SSD_ru = 0.0_dp
33 +  real( kind = dp ), save :: SSD_rlp = 0.0_dp
34    real( kind = dp ), save :: SSD_rup = 0.0_dp
35 +  real( kind = dp ), save :: SSD_rbig = 0.0_dp
36  
37    public :: check_sticky_FF
38    public :: set_sticky_params
# Line 44 | Line 47 | contains
47      return
48    end subroutine check_sticky_FF
49  
50 <  subroutine set_sticky_params(sticky_w0, sticky_v0)
51 <    real( kind = dp ), intent(in) :: sticky_w0, sticky_v0
50 >  subroutine set_sticky_params(sticky_w0, sticky_v0, sticky_v0p, &
51 >       sticky_rl, sticky_ru, sticky_rlp, sticky_rup)
52 >
53 >    real( kind = dp ), intent(in) :: sticky_w0, sticky_v0, sticky_v0p
54 >    real( kind = dp ), intent(in) :: sticky_rl, sticky_ru
55 >    real( kind = dp ), intent(in) :: sticky_rlp, sticky_rup
56      
57      ! we could pass all 5 parameters if we felt like it...
58      
59      SSD_w0 = sticky_w0
60      SSD_v0 = sticky_v0
61 <    SSD_rl = 2.75_DP
62 <    SSD_ru = 3.35_DP
63 <    SSD_rup = 4.0_DP
61 >    SSD_v0p = sticky_v0p
62 >    SSD_rl = sticky_rl
63 >    SSD_ru = sticky_ru
64 >    SSD_rlp = sticky_rlp
65 >    SSD_rup = sticky_rup
66 >
67 >    if (SSD_ru .gt. SSD_rup) then
68 >       SSD_rbig = SSD_ru
69 >    else
70 >       SSD_rbig = SSD_rup
71 >    endif
72    
73      sticky_initialized = .true.
74      return
75    end subroutine set_sticky_params
76  
77 <  subroutine do_sticky_pair(atom1, atom2, d, rij, r2, A, pot, f, t, &
77 >  subroutine do_sticky_pair(atom1, atom2, d, rij, r2, sw, vpair, pot, A,f, t, &
78         do_pot, do_stress)
79      
80      !! This routine does only the sticky portion of the SSD potential
# Line 68 | Line 83 | contains
83      
84      !! We assume that the rotation matrices have already been calculated
85      !! and placed in the A array.
86 <    
86 >
87      !! i and j are pointers to the two SSD atoms
88  
89      integer, intent(in) :: atom1, atom2
90      real (kind=dp), intent(inout) :: rij, r2
91      real (kind=dp), dimension(3), intent(in) :: d
92 <    real (kind=dp) :: pot
93 <    real (kind=dp), dimension(9,getNlocal()) :: A
94 <    real (kind=dp), dimension(3,getNlocal()) :: f
95 <    real (kind=dp), dimension(3,getNlocal()) :: t
92 >    real (kind=dp) :: pot, vpair, sw
93 >    real (kind=dp), dimension(9,nLocal) :: A
94 >    real (kind=dp), dimension(3,nLocal) :: f
95 >    real (kind=dp), dimension(3,nLocal) :: t
96      logical, intent(in) :: do_pot, do_stress
97  
98      real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
# Line 94 | Line 109 | contains
109      real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji      
110      real (kind=dp) :: fxradial, fyradial, fzradial
111      real (kind=dp) :: rijtest, rjitest
112 <      
112 >    real (kind=dp) :: radcomxi, radcomyi, radcomzi
113 >    real (kind=dp) :: radcomxj, radcomyj, radcomzj
114 >    integer :: id1, id2
115 >
116      if (.not.sticky_initialized) then
117         write(*,*) 'Sticky forces not initialized!'
118         return
119      endif
120  
103    r3 = r2*rij
104    r5 = r3*r2
105    
106    drdx = d(1) / rij
107    drdy = d(2) / rij
108    drdz = d(3) / rij
109    
110 #ifdef IS_MPI
111    ! rotate the inter-particle separation into the two different
112    ! body-fixed coordinate systems:
113    
114    xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
115    yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
116    zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
117    
118    ! negative sign because this is the vector from j to i:
119    
120    xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
121    yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
122    zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
123 #else
124    ! rotate the inter-particle separation into the two different
125    ! body-fixed coordinate systems:
126    
127    xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
128    yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
129    zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
130    
131    ! negative sign because this is the vector from j to i:
132    
133    xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
134    yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
135    zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
136 #endif
137    
138    xi2 = xi*xi
139    yi2 = yi*yi
140    zi2 = zi*zi
141    
142    xj2 = xj*xj
143    yj2 = yj*yj
144    zj2 = zj*zj
145  
146    call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
147    
148    wi = 2.0d0*(xi2-yi2)*zi / r3
149    wj = 2.0d0*(xj2-yj2)*zj / r3
150    w = wi+wj
151    
152    zif = zi/rij - 0.6d0
153    zis = zi/rij + 0.8d0
154    
155    zjf = zj/rij - 0.6d0
156    zjs = zj/rij + 0.8d0
157    
158    wip = zif*zif*zis*zis - SSD_w0
159    wjp = zjf*zjf*zjs*zjs - SSD_w0
160    wp = wip + wjp
121  
122 <    if (do_pot) then
123 < #ifdef IS_MPI
124 <       pot_row(atom1) = pot_row(atom1) + 0.25d0*SSD_v0*(s*w + sp*wp)
125 <       pot_col(atom2) = pot_col(atom2) + 0.25d0*SSD_v0*(s*w + sp*wp)
126 < #else
127 <       pot = pot + 0.5d0*SSD_v0*(s*w + sp*wp)
128 < #endif  
129 <    endif
130 <    
171 <    dwidx =   4.0d0*xi*zi/r3  - 6.0d0*xi*zi*(xi2-yi2)/r5
172 <    dwidy = - 4.0d0*yi*zi/r3  - 6.0d0*yi*zi*(xi2-yi2)/r5
173 <    dwidz =   2.0d0*(xi2-yi2)/r3  - 6.0d0*zi2*(xi2-yi2)/r5
174 <    
175 <    dwjdx =   4.0d0*xj*zj/r3  - 6.0d0*xj*zj*(xj2-yj2)/r5
176 <    dwjdy = - 4.0d0*yj*zj/r3  - 6.0d0*yj*zj*(xj2-yj2)/r5
177 <    dwjdz =   2.0d0*(xj2-yj2)/r3  - 6.0d0*zj2*(xj2-yj2)/r5
178 <    
179 <    uglyi = zif*zif*zis + zif*zis*zis
180 <    uglyj = zjf*zjf*zjs + zjf*zjs*zjs
181 <    
182 <    dwipdx = -2.0d0*xi*zi*uglyi/r3
183 <    dwipdy = -2.0d0*yi*zi*uglyi/r3
184 <    dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
185 <    
186 <    dwjpdx = -2.0d0*xj*zj*uglyj/r3
187 <    dwjpdy = -2.0d0*yj*zj*uglyj/r3
188 <    dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
189 <    
190 <    dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3
191 <    dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3
192 <    dwiduz = - 8.0d0*xi*yi*zi/r3
193 <    
194 <    dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3
195 <    dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3
196 <    dwjduz = - 8.0d0*xj*yj*zj/r3
197 <    
198 <    dwipdux =  2.0d0*yi*uglyi/rij
199 <    dwipduy = -2.0d0*xi*uglyi/rij
200 <    dwipduz =  0.0d0
201 <    
202 <    dwjpdux =  2.0d0*yj*uglyj/rij
203 <    dwjpduy = -2.0d0*xj*uglyj/rij
204 <    dwjpduz =  0.0d0
205 <    
206 <    ! do the torques first since they are easy:
207 <    ! remember that these are still in the body fixed axes
208 <    
209 <    txi = 0.5d0*SSD_v0*(s*dwidux + sp*dwipdux)
210 <    tyi = 0.5d0*SSD_v0*(s*dwiduy + sp*dwipduy)
211 <    tzi = 0.5d0*SSD_v0*(s*dwiduz + sp*dwipduz)
212 <    
213 <    txj = 0.5d0*SSD_v0*(s*dwjdux + sp*dwjpdux)
214 <    tyj = 0.5d0*SSD_v0*(s*dwjduy + sp*dwjpduy)
215 <    tzj = 0.5d0*SSD_v0*(s*dwjduz + sp*dwjpduz)
216 <    
217 <    ! go back to lab frame using transpose of rotation matrix:
218 <  
122 >    if ( rij .LE. SSD_rbig ) then
123 >
124 >       r3 = r2*rij
125 >       r5 = r3*r2
126 >
127 >       drdx = d(1) / rij
128 >       drdy = d(2) / rij
129 >       drdz = d(3) / rij
130 >
131   #ifdef IS_MPI
132 <    t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
133 <         a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
222 <    t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
223 <         a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
224 <    t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
225 <         a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
226 <    
227 <    t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
228 <         a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
229 <    t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
230 <         a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
231 <    t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
232 <         a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
233 < #else
234 <    t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
235 <    t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
236 <    t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
237 <    
238 <    t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
239 <    t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
240 <    t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
241 < #endif    
242 <    ! Now, on to the forces:
243 <    
244 <    ! first rotate the i terms back into the lab frame:
132 >       ! rotate the inter-particle separation into the two different
133 >       ! body-fixed coordinate systems:
134  
135 < #ifdef IS_MPI    
136 <    fxii = a_Row(1,atom1)*(s*dwidx+sp*dwipdx) + &
137 <         a_Row(4,atom1)*(s*dwidy+sp*dwipdy) + &
249 <         a_Row(7,atom1)*(s*dwidz+sp*dwipdz)
250 <    fyii = a_Row(2,atom1)*(s*dwidx+sp*dwipdx) + &
251 <         a_Row(5,atom1)*(s*dwidy+sp*dwipdy) + &
252 <         a_Row(8,atom1)*(s*dwidz+sp*dwipdz)
253 <    fzii = a_Row(3,atom1)*(s*dwidx+sp*dwipdx) + &
254 <         a_Row(6,atom1)*(s*dwidy+sp*dwipdy) + &
255 <         a_Row(9,atom1)*(s*dwidz+sp*dwipdz)
135 >       xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
136 >       yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
137 >       zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
138  
139 <    fxjj = a_Col(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
140 <         a_Col(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
141 <         a_Col(7,atom2)*(s*dwjdz+sp*dwjpdz)
142 <    fyjj = a_Col(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
143 <         a_Col(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
262 <         a_Col(8,atom2)*(s*dwjdz+sp*dwjpdz)
263 <    fzjj = a_Col(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
264 <         a_Col(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
265 <         a_Col(9,atom2)*(s*dwjdz+sp*dwjpdz)
139 >       ! negative sign because this is the vector from j to i:
140 >
141 >       xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
142 >       yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
143 >       zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
144   #else
145 <    fxii = a(1,atom1)*(s*dwidx+sp*dwipdx) + &
146 <         a(4,atom1)*(s*dwidy+sp*dwipdy) + &
269 <         a(7,atom1)*(s*dwidz+sp*dwipdz)
270 <    fyii = a(2,atom1)*(s*dwidx+sp*dwipdx) + &
271 <         a(5,atom1)*(s*dwidy+sp*dwipdy) + &
272 <         a(8,atom1)*(s*dwidz+sp*dwipdz)
273 <    fzii = a(3,atom1)*(s*dwidx+sp*dwipdx) + &
274 <         a(6,atom1)*(s*dwidy+sp*dwipdy) + &
275 <         a(9,atom1)*(s*dwidz+sp*dwipdz)
145 >       ! rotate the inter-particle separation into the two different
146 >       ! body-fixed coordinate systems:
147  
148 <    fxjj = a(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
149 <         a(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
150 <         a(7,atom2)*(s*dwjdz+sp*dwjpdz)
151 <    fyjj = a(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
152 <         a(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
153 <         a(8,atom2)*(s*dwjdz+sp*dwjpdz)
154 <    fzjj = a(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
155 <         a(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
156 <         a(9,atom2)*(s*dwjdz+sp*dwjpdz)
148 >       xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
149 >       yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
150 >       zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
151 >
152 >       ! negative sign because this is the vector from j to i:
153 >
154 >       xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
155 >       yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
156 >       zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
157   #endif
287    
288    fxij = -fxii
289    fyij = -fyii
290    fzij = -fzii
291        
292    fxji = -fxjj
293    fyji = -fyjj
294    fzji = -fzjj
295    
296    ! now assemble these with the radial-only terms:
158  
159 <    fxradial = 0.5d0*SSD_v0*(dsdr*drdx*w + dspdr*drdx*wp + fxii + fxji)
160 <    fyradial = 0.5d0*SSD_v0*(dsdr*drdy*w + dspdr*drdy*wp + fyii + fyji)
161 <    fzradial = 0.5d0*SSD_v0*(dsdr*drdz*w + dspdr*drdz*wp + fzii + fzji)
162 <      
163 < #ifdef IS_MPI
164 <    f_Row(1,atom1) = f_Row(1,atom1) + fxradial
165 <    f_Row(2,atom1) = f_Row(2,atom1) + fyradial
166 <    f_Row(3,atom1) = f_Row(3,atom1) + fzradial
167 <    
168 <    f_Col(1,atom2) = f_Col(1,atom2) - fxradial
169 <    f_Col(2,atom2) = f_Col(2,atom2) - fyradial
170 <    f_Col(3,atom2) = f_Col(3,atom2) - fzradial
159 >       xi2 = xi*xi
160 >       yi2 = yi*yi
161 >       zi2 = zi*zi
162 >
163 >       xj2 = xj*xj
164 >       yj2 = yj*yj
165 >       zj2 = zj*zj
166 >
167 >       call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
168 >
169 >       wi = 2.0d0*(xi2-yi2)*zi / r3
170 >       wj = 2.0d0*(xj2-yj2)*zj / r3
171 >       w = wi+wj
172 >
173 >       zif = zi/rij - 0.6d0
174 >       zis = zi/rij + 0.8d0
175 >
176 >       zjf = zj/rij - 0.6d0
177 >       zjs = zj/rij + 0.8d0
178 >
179 >       wip = zif*zif*zis*zis - SSD_w0
180 >       wjp = zjf*zjf*zjs*zjs - SSD_w0
181 >       wp = wip + wjp
182 >
183 >       vpair = vpair + 0.5d0*(SSD_v0*s*w + SSD_v0p*sp*wp)
184 >       if (do_pot) then
185 > #ifdef IS_MPI
186 >          pot_row(atom1) = pot_row(atom1) + 0.25d0*(SSD_v0*s*w + SSD_v0p*sp*wp)*sw
187 >          pot_col(atom2) = pot_col(atom2) + 0.25d0*(SSD_v0*s*w + SSD_v0p*sp*wp)*sw
188   #else
189 <    f(1,atom1) = f(1,atom1) + fxradial
190 <    f(2,atom1) = f(2,atom1) + fyradial
191 <    f(3,atom1) = f(3,atom1) + fzradial
192 <    
193 <    f(1,atom2) = f(1,atom2) - fxradial
194 <    f(2,atom2) = f(2,atom2) - fyradial
195 <    f(3,atom2) = f(3,atom2) - fzradial
189 >          pot = pot + 0.5d0*(SSD_v0*s*w + SSD_v0p*sp*wp)*sw
190 > #endif  
191 >       endif
192 >
193 >       dwidx =   4.0d0*xi*zi/r3  - 6.0d0*xi*zi*(xi2-yi2)/r5
194 >       dwidy = - 4.0d0*yi*zi/r3  - 6.0d0*yi*zi*(xi2-yi2)/r5
195 >       dwidz =   2.0d0*(xi2-yi2)/r3  - 6.0d0*zi2*(xi2-yi2)/r5
196 >
197 >       dwjdx =   4.0d0*xj*zj/r3  - 6.0d0*xj*zj*(xj2-yj2)/r5
198 >       dwjdy = - 4.0d0*yj*zj/r3  - 6.0d0*yj*zj*(xj2-yj2)/r5
199 >       dwjdz =   2.0d0*(xj2-yj2)/r3  - 6.0d0*zj2*(xj2-yj2)/r5
200 >
201 >       uglyi = zif*zif*zis + zif*zis*zis
202 >       uglyj = zjf*zjf*zjs + zjf*zjs*zjs
203 >
204 >       dwipdx = -2.0d0*xi*zi*uglyi/r3
205 >       dwipdy = -2.0d0*yi*zi*uglyi/r3
206 >       dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
207 >
208 >       dwjpdx = -2.0d0*xj*zj*uglyj/r3
209 >       dwjpdy = -2.0d0*yj*zj*uglyj/r3
210 >       dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
211 >
212 >       dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3
213 >       dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3
214 >       dwiduz = - 8.0d0*xi*yi*zi/r3
215 >
216 >       dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3
217 >       dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3
218 >       dwjduz = - 8.0d0*xj*yj*zj/r3
219 >
220 >       dwipdux =  2.0d0*yi*uglyi/rij
221 >       dwipduy = -2.0d0*xi*uglyi/rij
222 >       dwipduz =  0.0d0
223 >
224 >       dwjpdux =  2.0d0*yj*uglyj/rij
225 >       dwjpduy = -2.0d0*xj*uglyj/rij
226 >       dwjpduz =  0.0d0
227 >
228 >       ! do the torques first since they are easy:
229 >       ! remember that these are still in the body fixed axes
230 >
231 >       txi = 0.5d0*(SSD_v0*s*dwidux + SSD_v0p*sp*dwipdux)*sw
232 >       tyi = 0.5d0*(SSD_v0*s*dwiduy + SSD_v0p*sp*dwipduy)*sw
233 >       tzi = 0.5d0*(SSD_v0*s*dwiduz + SSD_v0p*sp*dwipduz)*sw
234 >
235 >       txj = 0.5d0*(SSD_v0*s*dwjdux + SSD_v0p*sp*dwjpdux)*sw
236 >       tyj = 0.5d0*(SSD_v0*s*dwjduy + SSD_v0p*sp*dwjpduy)*sw
237 >       tzj = 0.5d0*(SSD_v0*s*dwjduz + SSD_v0p*sp*dwjpduz)*sw
238 >
239 >       ! go back to lab frame using transpose of rotation matrix:
240 >
241 > #ifdef IS_MPI
242 >       t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
243 >            a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
244 >       t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
245 >            a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
246 >       t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
247 >            a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
248 >
249 >       t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
250 >            a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
251 >       t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
252 >            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
253 >       t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
254 >            a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
255 > #else
256 >       t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
257 >       t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
258 >       t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
259 >
260 >       t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
261 >       t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
262 >       t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
263 > #endif    
264 >       ! Now, on to the forces:
265 >
266 >       ! first rotate the i terms back into the lab frame:
267 >
268 >       radcomxi = (SSD_v0*s*dwidx+SSD_v0p*sp*dwipdx)*sw
269 >       radcomyi = (SSD_v0*s*dwidy+SSD_v0p*sp*dwipdy)*sw
270 >       radcomzi = (SSD_v0*s*dwidz+SSD_v0p*sp*dwipdz)*sw
271 >
272 >       radcomxj = (SSD_v0*s*dwjdx+SSD_v0p*sp*dwjpdx)*sw
273 >       radcomyj = (SSD_v0*s*dwjdy+SSD_v0p*sp*dwjpdy)*sw
274 >       radcomzj = (SSD_v0*s*dwjdz+SSD_v0p*sp*dwjpdz)*sw
275 >
276 > #ifdef IS_MPI    
277 >       fxii = a_Row(1,atom1)*(radcomxi) + &
278 >            a_Row(4,atom1)*(radcomyi) + &
279 >            a_Row(7,atom1)*(radcomzi)
280 >       fyii = a_Row(2,atom1)*(radcomxi) + &
281 >            a_Row(5,atom1)*(radcomyi) + &
282 >            a_Row(8,atom1)*(radcomzi)
283 >       fzii = a_Row(3,atom1)*(radcomxi) + &
284 >            a_Row(6,atom1)*(radcomyi) + &
285 >            a_Row(9,atom1)*(radcomzi)
286 >
287 >       fxjj = a_Col(1,atom2)*(radcomxj) + &
288 >            a_Col(4,atom2)*(radcomyj) + &
289 >            a_Col(7,atom2)*(radcomzj)
290 >       fyjj = a_Col(2,atom2)*(radcomxj) + &
291 >            a_Col(5,atom2)*(radcomyj) + &
292 >            a_Col(8,atom2)*(radcomzj)
293 >       fzjj = a_Col(3,atom2)*(radcomxj)+ &
294 >            a_Col(6,atom2)*(radcomyj) + &
295 >            a_Col(9,atom2)*(radcomzj)
296 > #else
297 >       fxii = a(1,atom1)*(radcomxi) + &
298 >            a(4,atom1)*(radcomyi) + &
299 >            a(7,atom1)*(radcomzi)
300 >       fyii = a(2,atom1)*(radcomxi) + &
301 >            a(5,atom1)*(radcomyi) + &
302 >            a(8,atom1)*(radcomzi)
303 >       fzii = a(3,atom1)*(radcomxi) + &
304 >            a(6,atom1)*(radcomyi) + &
305 >            a(9,atom1)*(radcomzi)
306 >
307 >       fxjj = a(1,atom2)*(radcomxj) + &
308 >            a(4,atom2)*(radcomyj) + &
309 >            a(7,atom2)*(radcomzj)
310 >       fyjj = a(2,atom2)*(radcomxj) + &
311 >            a(5,atom2)*(radcomyj) + &
312 >            a(8,atom2)*(radcomzj)
313 >       fzjj = a(3,atom2)*(radcomxj)+ &
314 >            a(6,atom2)*(radcomyj) + &
315 >            a(9,atom2)*(radcomzj)
316   #endif
317 <    
318 <    if (do_stress) then          
319 <       if (molMembershipList(atom1) .ne. molMembershipList(atom2)) then
320 <          tau_Temp(1) = tau_Temp(1) + fxradial * d(1)
321 <          tau_Temp(2) = tau_Temp(2) + fxradial * d(2)
322 <          tau_Temp(3) = tau_Temp(3) + fxradial * d(3)
323 <          tau_Temp(4) = tau_Temp(4) + fyradial * d(1)
324 <          tau_Temp(5) = tau_Temp(5) + fyradial * d(2)
325 <          tau_Temp(6) = tau_Temp(6) + fyradial * d(3)
326 <          tau_Temp(7) = tau_Temp(7) + fzradial * d(1)
327 <          tau_Temp(8) = tau_Temp(8) + fzradial * d(2)
328 <          tau_Temp(9) = tau_Temp(9) + fzradial * d(3)
329 <          virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
317 >
318 >       fxij = -fxii
319 >       fyij = -fyii
320 >       fzij = -fzii
321 >
322 >       fxji = -fxjj
323 >       fyji = -fyjj
324 >       fzji = -fzjj
325 >
326 >       ! now assemble these with the radial-only terms:
327 >
328 >       fxradial = 0.5d0*(SSD_v0*dsdr*drdx*w + SSD_v0p*dspdr*drdx*wp + fxii + fxji)
329 >       fyradial = 0.5d0*(SSD_v0*dsdr*drdy*w + SSD_v0p*dspdr*drdy*wp + fyii + fyji)
330 >       fzradial = 0.5d0*(SSD_v0*dsdr*drdz*w + SSD_v0p*dspdr*drdz*wp + fzii + fzji)
331 >
332 > #ifdef IS_MPI
333 >       f_Row(1,atom1) = f_Row(1,atom1) + fxradial
334 >       f_Row(2,atom1) = f_Row(2,atom1) + fyradial
335 >       f_Row(3,atom1) = f_Row(3,atom1) + fzradial
336 >
337 >       f_Col(1,atom2) = f_Col(1,atom2) - fxradial
338 >       f_Col(2,atom2) = f_Col(2,atom2) - fyradial
339 >       f_Col(3,atom2) = f_Col(3,atom2) - fzradial
340 > #else
341 >       f(1,atom1) = f(1,atom1) + fxradial
342 >       f(2,atom1) = f(2,atom1) + fyradial
343 >       f(3,atom1) = f(3,atom1) + fzradial
344 >
345 >       f(1,atom2) = f(1,atom2) - fxradial
346 >       f(2,atom2) = f(2,atom2) - fyradial
347 >       f(3,atom2) = f(3,atom2) - fzradial
348 > #endif
349 >
350 >       if (do_stress) then          
351 >
352 > #ifdef IS_MPI
353 >          id1 = tagRow(atom1)
354 >          id2 = tagColumn(atom2)
355 > #else
356 >          id1 = atom1
357 >          id2 = atom2
358 > #endif
359 >
360 >          if (molMembershipList(id1) .ne. molMembershipList(id2)) then
361 >
362 >             ! because the d vector is the rj - ri vector, and
363 >             ! because fxradial, fyradial, and fzradial are the
364 >             ! (positive) force on atom i (negative on atom j) we need
365 >             ! a negative sign here:
366 >
367 >             tau_Temp(1) = tau_Temp(1) - d(1) * fxradial
368 >             tau_Temp(2) = tau_Temp(2) - d(1) * fyradial
369 >             tau_Temp(3) = tau_Temp(3) - d(1) * fzradial
370 >             tau_Temp(4) = tau_Temp(4) - d(2) * fxradial
371 >             tau_Temp(5) = tau_Temp(5) - d(2) * fyradial
372 >             tau_Temp(6) = tau_Temp(6) - d(2) * fzradial
373 >             tau_Temp(7) = tau_Temp(7) - d(3) * fxradial
374 >             tau_Temp(8) = tau_Temp(8) - d(3) * fyradial
375 >             tau_Temp(9) = tau_Temp(9) - d(3) * fzradial
376 >
377 >             virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
378 >          endif
379         endif
380      endif
381 <  
381 >
382    end subroutine do_sticky_pair
383  
384    !! calculates the switching functions and their derivatives for a given
385    subroutine calc_sw_fnc(r, s, sp, dsdr, dspdr)
386 <          
386 >    
387      real (kind=dp), intent(in) :: r
388      real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr
389 <
389 >    
390      ! distances must be in angstroms
391      
392      if (r.lt.SSD_rl) then
393         s = 1.0d0
347       sp = 1.0d0
394         dsdr = 0.0d0
395 +    elseif (r.gt.SSD_ru) then
396 +       s = 0.0d0
397 +       dsdr = 0.0d0
398 +    else
399 +       s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
400 +            ((SSD_ru - SSD_rl)**3)
401 +       dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
402 +    endif
403 +
404 +    if (r.lt.SSD_rlp) then
405 +       sp = 1.0d0      
406         dspdr = 0.0d0
407      elseif (r.gt.SSD_rup) then
351       s = 0.0d0
408         sp = 0.0d0
353       dsdr = 0.0d0
409         dspdr = 0.0d0
410      else
411 <       sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_rup-r)**2) / &
412 <            ((SSD_rup - SSD_rl)**3)
413 <       dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rl)/((SSD_rup - SSD_rl)**3)
359 <      
360 <       if (r.gt.SSD_ru) then
361 <          s = 0.0d0
362 <          dsdr = 0.0d0
363 <       else
364 <          s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
365 <               ((SSD_ru - SSD_rl)**3)
366 <          dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
367 <       endif
411 >       sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rlp) * (SSD_rup-r)**2) / &
412 >            ((SSD_rup - SSD_rlp)**3)
413 >       dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rlp)/((SSD_rup - SSD_rlp)**3)      
414      endif
415      
416      return

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines