ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/calc_sticky_pair.F90
(Generate patch)

Comparing:
branches/mmeineke/OOPSE/libmdtools/calc_sticky_pair.F90 (file contents), Revision 377 by mmeineke, Fri Mar 21 17:42:12 2003 UTC vs.
trunk/OOPSE/libmdtools/calc_sticky_pair.F90 (file contents), Revision 898 by chuckv, Mon Jan 5 22:49:14 2004 UTC

# Line 9 | Line 9
9   !! @author Matthew Meineke
10   !! @author Christopher Fennel
11   !! @author J. Daniel Gezelter
12 < !! @version $Id: calc_sticky_pair.F90,v 1.1.1.1 2003-03-21 17:42:12 mmeineke Exp $, $Date: 2003-03-21 17:42:12 $, $Name: not supported by cvs2svn $, $Revision: 1.1.1.1 $
12 > !! @version $Id: calc_sticky_pair.F90,v 1.16 2004-01-05 22:49:14 chuckv Exp $, $Date: 2004-01-05 22:49:14 $, $Name: not supported by cvs2svn $, $Revision: 1.16 $
13  
14   module sticky_pair
15  
16    use force_globals
17    use definitions
18 +  use simulation
19   #ifdef IS_MPI
20    use mpiSimulation
21   #endif
# Line 24 | Line 25 | module sticky_pair
25    PRIVATE
26  
27    logical, save :: sticky_initialized = .false.
28 <  real( kind = dp ), save :: SSD_w0
29 <  real( kind = dp ), save :: SSD_v0
30 <  real( kind = dp ), save :: SSD_rl
31 <  real( kind = dp ), save :: SSD_ru
32 <  real( kind = dp ), save :: SSD_rup
28 >  real( kind = dp ), save :: SSD_w0 = 0.0_dp
29 >  real( kind = dp ), save :: SSD_v0 = 0.0_dp
30 >  real( kind = dp ), save :: SSD_v0p = 0.0_dp
31 >  real( kind = dp ), save :: SSD_rl = 0.0_dp
32 >  real( kind = dp ), save :: SSD_ru = 0.0_dp
33 >  real( kind = dp ), save :: SSD_rlp = 0.0_dp
34 >  real( kind = dp ), save :: SSD_rup = 0.0_dp
35 >  real( kind = dp ), save :: SSD_rbig = 0.0_dp
36  
37    public :: check_sticky_FF
38    public :: set_sticky_params
# Line 43 | Line 47 | contains
47      return
48    end subroutine check_sticky_FF
49  
50 <  subroutine set_sticky_params(sticky_w0, sticky_v0)
51 <    real( kind = dp ), intent(in) :: sticky_w0, sticky_v0
50 >  subroutine set_sticky_params(sticky_w0, sticky_v0, sticky_v0p, &
51 >       sticky_rl, sticky_ru, sticky_rlp, sticky_rup)
52 >
53 >    real( kind = dp ), intent(in) :: sticky_w0, sticky_v0, sticky_v0p
54 >    real( kind = dp ), intent(in) :: sticky_rl, sticky_ru
55 >    real( kind = dp ), intent(in) :: sticky_rlp, sticky_rup
56      
57      ! we could pass all 5 parameters if we felt like it...
58      
59      SSD_w0 = sticky_w0
60      SSD_v0 = sticky_v0
61 <    SSD_rl = 2.75_DP
62 <    SSD_ru = 3.35_DP
63 <    SSD_rup = 4.0_DP
61 >    SSD_v0p = sticky_v0p
62 >    SSD_rl = sticky_rl
63 >    SSD_ru = sticky_ru
64 >    SSD_rlp = sticky_rlp
65 >    SSD_rup = sticky_rup
66 >
67 >    if (SSD_ru .gt. SSD_rup) then
68 >       SSD_rbig = SSD_ru
69 >    else
70 >       SSD_rbig = SSD_rup
71 >    endif
72    
73      sticky_initialized = .true.
74      return
# Line 60 | Line 76 | contains
76  
77    subroutine do_sticky_pair(atom1, atom2, d, rij, r2, A, pot, f, t, &
78         do_pot, do_stress)
79 <    
79 >
80      !! This routine does only the sticky portion of the SSD potential
81      !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
82      !! The Lennard-Jones and dipolar interaction must be handled separately.
83 <    
83 >
84      !! We assume that the rotation matrices have already been calculated
85      !! and placed in the A array.
86 <    
86 >
87      !! i and j are pointers to the two SSD atoms
88  
89      integer, intent(in) :: atom1, atom2
90      real (kind=dp), intent(inout) :: rij, r2
91      real (kind=dp), dimension(3), intent(in) :: d
92      real (kind=dp) :: pot
93 <    real (kind=dp), dimension(:,:) :: A
94 <    real (kind=dp), dimension(:,:) :: f
95 <    real (kind=dp), dimension(:,:) :: t
93 >    real (kind=dp), dimension(9,nLocal) :: A
94 >    real (kind=dp), dimension(3,nLocal) :: f
95 >    real (kind=dp), dimension(3,nLocal) :: t
96      logical, intent(in) :: do_pot, do_stress
97  
98      real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
# Line 92 | Line 108 | contains
108      real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
109      real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji      
110      real (kind=dp) :: fxradial, fyradial, fzradial
111 <      
111 >    real (kind=dp) :: rijtest, rjitest
112 >    real (kind=dp) :: radcomxi, radcomyi, radcomzi
113 >    real (kind=dp) :: radcomxj, radcomyj, radcomzj
114 >    integer :: id1, id2
115 >
116      if (.not.sticky_initialized) then
117         write(*,*) 'Sticky forces not initialized!'
118         return
119      endif
120  
121 <    r3 = r2*rij
122 <    r5 = r3*r2
123 <    
124 <    drdx = d(1) / rij
125 <    drdy = d(2) / rij
126 <    drdz = d(3) / rij
127 <    
121 >
122 >    if ( rij .LE. SSD_rbig ) then
123 >
124 >       r3 = r2*rij
125 >       r5 = r3*r2
126 >
127 >       drdx = d(1) / rij
128 >       drdy = d(2) / rij
129 >       drdz = d(3) / rij
130 >
131   #ifdef IS_MPI
132 <    ! rotate the inter-particle separation into the two different
133 <    ! body-fixed coordinate systems:
134 <    
135 <    xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
136 <    yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
137 <    zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
138 <    
139 <    ! negative sign because this is the vector from j to i:
140 <    
141 <    xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
142 <    yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
143 <    zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
132 >       ! rotate the inter-particle separation into the two different
133 >       ! body-fixed coordinate systems:
134 >
135 >       xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
136 >       yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
137 >       zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
138 >
139 >       ! negative sign because this is the vector from j to i:
140 >
141 >       xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
142 >       yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
143 >       zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
144   #else
145 <    ! rotate the inter-particle separation into the two different
146 <    ! body-fixed coordinate systems:
147 <    
148 <    xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
149 <    yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
150 <    zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
151 <    
152 <    ! negative sign because this is the vector from j to i:
153 <    
154 <    xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
155 <    yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
156 <    zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
145 >       ! rotate the inter-particle separation into the two different
146 >       ! body-fixed coordinate systems:
147 >
148 >       xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
149 >       yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
150 >       zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
151 >
152 >       ! negative sign because this is the vector from j to i:
153 >
154 >       xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
155 >       yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
156 >       zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
157   #endif
135    
136    xi2 = xi*xi
137    yi2 = yi*yi
138    zi2 = zi*zi
139    
140    xj2 = xj*xj
141    yj2 = yj*yj
142    zj2 = zj*zj
143    
144    call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
145    
146    wi = 2.0d0*(xi2-yi2)*zi / r3
147    wj = 2.0d0*(xj2-yj2)*zj / r3
148    w = wi+wj
149    
150    zif = zi/rij - 0.6d0
151    zis = zi/rij + 0.8d0
152    
153    zjf = zj/rij - 0.6d0
154    zjs = zj/rij + 0.8d0
155    
156    wip = zif*zif*zis*zis - SSD_w0
157    wjp = zjf*zjf*zjs*zjs - SSD_w0
158    wp = wip + wjp
158  
159 +       xi2 = xi*xi
160 +       yi2 = yi*yi
161 +       zi2 = zi*zi
162  
163 <    if (do_pot) then
163 >       xj2 = xj*xj
164 >       yj2 = yj*yj
165 >       zj2 = zj*zj
166 >
167 >       call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
168 >
169 >       wi = 2.0d0*(xi2-yi2)*zi / r3
170 >       wj = 2.0d0*(xj2-yj2)*zj / r3
171 >       w = wi+wj
172 >
173 >       zif = zi/rij - 0.6d0
174 >       zis = zi/rij + 0.8d0
175 >
176 >       zjf = zj/rij - 0.6d0
177 >       zjs = zj/rij + 0.8d0
178 >
179 >       wip = zif*zif*zis*zis - SSD_w0
180 >       wjp = zjf*zjf*zjs*zjs - SSD_w0
181 >       wp = wip + wjp
182 >
183 >       if (do_pot) then
184   #ifdef IS_MPI
185 <       pot_row(atom1) = pot_row(atom1) + 0.25d0*SSD_v0*(s*w + sp*wp)
186 <       pot_col(atom2) = pot_col(atom2) + 0.25d0*SSD_v0*(s*w + sp*wp)
185 >          pot_row(atom1) = pot_row(atom1) + 0.25d0*(SSD_v0*s*w + SSD_v0p*sp*wp)
186 >          pot_col(atom2) = pot_col(atom2) + 0.25d0*(SSD_v0*s*w + SSD_v0p*sp*wp)
187   #else
188 <       pot = pot + 0.5d0*SSD_v0*(s*w + sp*wp)
188 >          pot = pot + 0.5d0*(SSD_v0*s*w + SSD_v0p*sp*wp)
189   #endif  
190 <    endif
169 <    
170 <    dwidx =   4.0d0*xi*zi/r3  - 6.0d0*xi*zi*(xi2-yi2)/r5
171 <    dwidy = - 4.0d0*yi*zi/r3  - 6.0d0*yi*zi*(xi2-yi2)/r5
172 <    dwidz =   2.0d0*(xi2-yi2)/r3  - 6.0d0*zi2*(xi2-yi2)/r5
173 <    
174 <    dwjdx =   4.0d0*xj*zj/r3  - 6.0d0*xj*zj*(xj2-yj2)/r5
175 <    dwjdy = - 4.0d0*yj*zj/r3  - 6.0d0*yj*zj*(xj2-yj2)/r5
176 <    dwjdz =   2.0d0*(xj2-yj2)/r3  - 6.0d0*zj2*(xj2-yj2)/r5
177 <    
178 <    uglyi = zif*zif*zis + zif*zis*zis
179 <    uglyj = zjf*zjf*zjs + zjf*zjs*zjs
180 <    
181 <    dwipdx = -2.0d0*xi*zi*uglyi/r3
182 <    dwipdy = -2.0d0*yi*zi*uglyi/r3
183 <    dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
184 <    
185 <    dwjpdx = -2.0d0*xj*zj*uglyj/r3
186 <    dwjpdy = -2.0d0*yj*zj*uglyj/r3
187 <    dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
188 <    
189 <    dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3
190 <    dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3
191 <    dwiduz = - 8.0d0*xi*yi*zi/r3
192 <    
193 <    dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3
194 <    dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3
195 <    dwjduz = - 8.0d0*xj*yj*zj/r3
196 <    
197 <    dwipdux =  2.0d0*yi*uglyi/rij
198 <    dwipduy = -2.0d0*xi*uglyi/rij
199 <    dwipduz =  0.0d0
200 <    
201 <    dwjpdux =  2.0d0*yj*uglyj/rij
202 <    dwjpduy = -2.0d0*xj*uglyj/rij
203 <    dwjpduz =  0.0d0
204 <    
205 <    ! do the torques first since they are easy:
206 <    ! remember that these are still in the body fixed axes
207 <    
208 <    txi = 0.5d0*SSD_v0*(s*dwidux + sp*dwipdux)
209 <    tyi = 0.5d0*SSD_v0*(s*dwiduy + sp*dwipduy)
210 <    tzi = 0.5d0*SSD_v0*(s*dwiduz + sp*dwipduz)
211 <    
212 <    txj = 0.5d0*SSD_v0*(s*dwjdux + sp*dwjpdux)
213 <    tyj = 0.5d0*SSD_v0*(s*dwjduy + sp*dwjpduy)
214 <    tzj = 0.5d0*SSD_v0*(s*dwjduz + sp*dwjpduz)
215 <    
216 <    ! go back to lab frame using transpose of rotation matrix:
217 <  
218 < #ifdef IS_MPI
219 <    t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
220 <         a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
221 <    t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
222 <         a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
223 <    t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
224 <         a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
225 <    
226 <    t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
227 <         a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
228 <    t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
229 <         a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
230 <    t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
231 <         a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
232 < #else
233 <    t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
234 <    t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
235 <    t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
236 <    
237 <    t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
238 <    t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
239 <    t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
240 < #endif    
241 <    ! Now, on to the forces:
242 <    
243 <    ! first rotate the i terms back into the lab frame:
190 >       endif
191  
192 < #ifdef IS_MPI    
193 <    fxii = a_Row(1,atom1)*(s*dwidx+sp*dwipdx) + &
194 <         a_Row(4,atom1)*(s*dwidy+sp*dwipdy) + &
248 <         a_Row(7,atom1)*(s*dwidz+sp*dwipdz)
249 <    fyii = a_Row(2,atom1)*(s*dwidx+sp*dwipdx) + &
250 <         a_Row(5,atom1)*(s*dwidy+sp*dwipdy) + &
251 <         a_Row(8,atom1)*(s*dwidz+sp*dwipdz)
252 <    fzii = a_Row(3,atom1)*(s*dwidx+sp*dwipdx) + &
253 <         a_Row(6,atom1)*(s*dwidy+sp*dwipdy) + &
254 <         a_Row(9,atom1)*(s*dwidz+sp*dwipdz)
192 >       dwidx =   4.0d0*xi*zi/r3  - 6.0d0*xi*zi*(xi2-yi2)/r5
193 >       dwidy = - 4.0d0*yi*zi/r3  - 6.0d0*yi*zi*(xi2-yi2)/r5
194 >       dwidz =   2.0d0*(xi2-yi2)/r3  - 6.0d0*zi2*(xi2-yi2)/r5
195  
196 <    fxjj = a_Col(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
197 <         a_Col(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
198 <         a_Col(7,atom2)*(s*dwjdz+sp*dwjpdz)
199 <    fyjj = a_Col(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
200 <         a_Col(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
201 <         a_Col(8,atom2)*(s*dwjdz+sp*dwjpdz)
202 <    fzjj = a_Col(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
203 <         a_Col(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
204 <         a_Col(9,atom2)*(s*dwjdz+sp*dwjpdz)
196 >       dwjdx =   4.0d0*xj*zj/r3  - 6.0d0*xj*zj*(xj2-yj2)/r5
197 >       dwjdy = - 4.0d0*yj*zj/r3  - 6.0d0*yj*zj*(xj2-yj2)/r5
198 >       dwjdz =   2.0d0*(xj2-yj2)/r3  - 6.0d0*zj2*(xj2-yj2)/r5
199 >
200 >       uglyi = zif*zif*zis + zif*zis*zis
201 >       uglyj = zjf*zjf*zjs + zjf*zjs*zjs
202 >
203 >       dwipdx = -2.0d0*xi*zi*uglyi/r3
204 >       dwipdy = -2.0d0*yi*zi*uglyi/r3
205 >       dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
206 >
207 >       dwjpdx = -2.0d0*xj*zj*uglyj/r3
208 >       dwjpdy = -2.0d0*yj*zj*uglyj/r3
209 >       dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
210 >
211 >       dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3
212 >       dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3
213 >       dwiduz = - 8.0d0*xi*yi*zi/r3
214 >
215 >       dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3
216 >       dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3
217 >       dwjduz = - 8.0d0*xj*yj*zj/r3
218 >
219 >       dwipdux =  2.0d0*yi*uglyi/rij
220 >       dwipduy = -2.0d0*xi*uglyi/rij
221 >       dwipduz =  0.0d0
222 >
223 >       dwjpdux =  2.0d0*yj*uglyj/rij
224 >       dwjpduy = -2.0d0*xj*uglyj/rij
225 >       dwjpduz =  0.0d0
226 >
227 >       ! do the torques first since they are easy:
228 >       ! remember that these are still in the body fixed axes
229 >
230 >       txi = 0.5d0*(SSD_v0*s*dwidux + SSD_v0p*sp*dwipdux)
231 >       tyi = 0.5d0*(SSD_v0*s*dwiduy + SSD_v0p*sp*dwipduy)
232 >       tzi = 0.5d0*(SSD_v0*s*dwiduz + SSD_v0p*sp*dwipduz)
233 >
234 >       txj = 0.5d0*(SSD_v0*s*dwjdux + SSD_v0p*sp*dwjpdux)
235 >       tyj = 0.5d0*(SSD_v0*s*dwjduy + SSD_v0p*sp*dwjpduy)
236 >       tzj = 0.5d0*(SSD_v0*s*dwjduz + SSD_v0p*sp*dwjpduz)
237 >
238 >       ! go back to lab frame using transpose of rotation matrix:
239 >
240 > #ifdef IS_MPI
241 >       t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
242 >            a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
243 >       t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
244 >            a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
245 >       t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
246 >            a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
247 >
248 >       t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
249 >            a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
250 >       t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
251 >            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
252 >       t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
253 >            a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
254   #else
255 <    fxii = a(1,atom1)*(s*dwidx+sp*dwipdx) + &
256 <         a(4,atom1)*(s*dwidy+sp*dwipdy) + &
257 <         a(7,atom1)*(s*dwidz+sp*dwipdz)
269 <    fyii = a(2,atom1)*(s*dwidx+sp*dwipdx) + &
270 <         a(5,atom1)*(s*dwidy+sp*dwipdy) + &
271 <         a(8,atom1)*(s*dwidz+sp*dwipdz)
272 <    fzii = a(3,atom1)*(s*dwidx+sp*dwipdx) + &
273 <         a(6,atom1)*(s*dwidy+sp*dwipdy) + &
274 <         a(9,atom1)*(s*dwidz+sp*dwipdz)
255 >       t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
256 >       t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
257 >       t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
258  
259 <    fxjj = a(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
260 <         a(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
261 <         a(7,atom2)*(s*dwjdz+sp*dwjpdz)
262 <    fyjj = a(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
263 <         a(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
264 <         a(8,atom2)*(s*dwjdz+sp*dwjpdz)
265 <    fzjj = a(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
266 <         a(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
267 <         a(9,atom2)*(s*dwjdz+sp*dwjpdz)
259 >       t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
260 >       t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
261 >       t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
262 > #endif    
263 >       ! Now, on to the forces:
264 >
265 >       ! first rotate the i terms back into the lab frame:
266 >
267 >       radcomxi = SSD_v0*s*dwidx+SSD_v0p*sp*dwipdx
268 >       radcomyi = SSD_v0*s*dwidy+SSD_v0p*sp*dwipdy
269 >       radcomzi = SSD_v0*s*dwidz+SSD_v0p*sp*dwipdz
270 >
271 >       radcomxj = SSD_v0*s*dwjdx+SSD_v0p*sp*dwjpdx
272 >       radcomyj = SSD_v0*s*dwjdy+SSD_v0p*sp*dwjpdy
273 >       radcomzj = SSD_v0*s*dwjdz+SSD_v0p*sp*dwjpdz
274 >
275 > #ifdef IS_MPI    
276 >       fxii = a_Row(1,atom1)*(radcomxi) + &
277 >            a_Row(4,atom1)*(radcomyi) + &
278 >            a_Row(7,atom1)*(radcomzi)
279 >       fyii = a_Row(2,atom1)*(radcomxi) + &
280 >            a_Row(5,atom1)*(radcomyi) + &
281 >            a_Row(8,atom1)*(radcomzi)
282 >       fzii = a_Row(3,atom1)*(radcomxi) + &
283 >            a_Row(6,atom1)*(radcomyi) + &
284 >            a_Row(9,atom1)*(radcomzi)
285 >
286 >       fxjj = a_Col(1,atom2)*(radcomxj) + &
287 >            a_Col(4,atom2)*(radcomyj) + &
288 >            a_Col(7,atom2)*(radcomzj)
289 >       fyjj = a_Col(2,atom2)*(radcomxj) + &
290 >            a_Col(5,atom2)*(radcomyj) + &
291 >            a_Col(8,atom2)*(radcomzj)
292 >       fzjj = a_Col(3,atom2)*(radcomxj)+ &
293 >            a_Col(6,atom2)*(radcomyj) + &
294 >            a_Col(9,atom2)*(radcomzj)
295 > #else
296 >       fxii = a(1,atom1)*(radcomxi) + &
297 >            a(4,atom1)*(radcomyi) + &
298 >            a(7,atom1)*(radcomzi)
299 >       fyii = a(2,atom1)*(radcomxi) + &
300 >            a(5,atom1)*(radcomyi) + &
301 >            a(8,atom1)*(radcomzi)
302 >       fzii = a(3,atom1)*(radcomxi) + &
303 >            a(6,atom1)*(radcomyi) + &
304 >            a(9,atom1)*(radcomzi)
305 >
306 >       fxjj = a(1,atom2)*(radcomxj) + &
307 >            a(4,atom2)*(radcomyj) + &
308 >            a(7,atom2)*(radcomzj)
309 >       fyjj = a(2,atom2)*(radcomxj) + &
310 >            a(5,atom2)*(radcomyj) + &
311 >            a(8,atom2)*(radcomzj)
312 >       fzjj = a(3,atom2)*(radcomxj)+ &
313 >            a(6,atom2)*(radcomyj) + &
314 >            a(9,atom2)*(radcomzj)
315   #endif
286    
287    fxij = -fxii
288    fyij = -fyii
289    fzij = -fzii
290        
291    fxji = -fxjj
292    fyji = -fyjj
293    fzji = -fzjj
294    
295    ! now assemble these with the radial-only terms:
316  
317 <    fxradial = 0.5d0*SSD_v0*(dsdr*drdx*w + dspdr*drdx*wp + fxii + fxji)
318 <    fyradial = 0.5d0*SSD_v0*(dsdr*drdy*w + dspdr*drdy*wp + fyii + fyji)
319 <    fzradial = 0.5d0*SSD_v0*(dsdr*drdz*w + dspdr*drdz*wp + fzii + fzji)
320 <      
317 >       fxij = -fxii
318 >       fyij = -fyii
319 >       fzij = -fzii
320 >
321 >       fxji = -fxjj
322 >       fyji = -fyjj
323 >       fzji = -fzjj
324 >
325 >       ! now assemble these with the radial-only terms:
326 >
327 >       fxradial = 0.5d0*(SSD_v0*dsdr*drdx*w + SSD_v0p*dspdr*drdx*wp + fxii + fxji)
328 >       fyradial = 0.5d0*(SSD_v0*dsdr*drdy*w + SSD_v0p*dspdr*drdy*wp + fyii + fyji)
329 >       fzradial = 0.5d0*(SSD_v0*dsdr*drdz*w + SSD_v0p*dspdr*drdz*wp + fzii + fzji)
330 >
331   #ifdef IS_MPI
332 <    f_Row(1,atom1) = f_Row(1,atom1) + fxradial
333 <    f_Row(2,atom1) = f_Row(2,atom1) + fyradial
334 <    f_Row(3,atom1) = f_Row(3,atom1) + fzradial
335 <    
336 <    f_Col(1,atom2) = f_Col(1,atom2) + 0.5d0*SSD_v0*(-dsdr*drdx*w - &
337 <         dspdr*drdx*wp + fxjj + fxij)
338 <    f_Col(2,atom2) = f_Col(2,atom2) + 0.5d0*SSD_v0*(-dsdr*drdy*w - &
309 <         dspdr*drdy*wp + fyjj + fyij)
310 <    f_Col(3,atom2) = f_Col(3,atom2) + 0.5d0*SSD_v0*(-dsdr*drdz*w - &
311 <         dspdr*drdz*wp + fzjj + fzij)
332 >       f_Row(1,atom1) = f_Row(1,atom1) + fxradial
333 >       f_Row(2,atom1) = f_Row(2,atom1) + fyradial
334 >       f_Row(3,atom1) = f_Row(3,atom1) + fzradial
335 >
336 >       f_Col(1,atom2) = f_Col(1,atom2) - fxradial
337 >       f_Col(2,atom2) = f_Col(2,atom2) - fyradial
338 >       f_Col(3,atom2) = f_Col(3,atom2) - fzradial
339   #else
340 <    f(1,atom1) = f(1,atom1) + fxradial
341 <    f(2,atom1) = f(2,atom1) + fyradial
342 <    f(3,atom1) = f(3,atom1) + fzradial
343 <    
344 <    f(1,atom2) = f(1,atom2) + 0.5d0*SSD_v0*(-dsdr*drdx*w - dspdr*drdx*wp + &
345 <         fxjj + fxij)
346 <    f(2,atom2) = f(2,atom2) + 0.5d0*SSD_v0*(-dsdr*drdy*w - dspdr*drdy*wp + &
320 <         fyjj + fyij)
321 <    f(3,atom2) = f(3,atom2) + 0.5d0*SSD_v0*(-dsdr*drdz*w - dspdr*drdz*wp + &
322 <         fzjj + fzij)
340 >       f(1,atom1) = f(1,atom1) + fxradial
341 >       f(2,atom1) = f(2,atom1) + fyradial
342 >       f(3,atom1) = f(3,atom1) + fzradial
343 >
344 >       f(1,atom2) = f(1,atom2) - fxradial
345 >       f(2,atom2) = f(2,atom2) - fyradial
346 >       f(3,atom2) = f(3,atom2) - fzradial
347   #endif
348 <    
349 <    if (do_stress) then          
350 <       tau_Temp(1) = tau_Temp(1) + fxradial * d(1)
351 <       tau_Temp(2) = tau_Temp(2) + fxradial * d(2)
352 <       tau_Temp(3) = tau_Temp(3) + fxradial * d(3)
353 <       tau_Temp(4) = tau_Temp(4) + fyradial * d(1)
354 <       tau_Temp(5) = tau_Temp(5) + fyradial * d(2)
355 <       tau_Temp(6) = tau_Temp(6) + fyradial * d(3)
356 <       tau_Temp(7) = tau_Temp(7) + fzradial * d(1)
357 <       tau_Temp(8) = tau_Temp(8) + fzradial * d(2)
358 <       tau_Temp(9) = tau_Temp(9) + fzradial * d(3)
359 <       virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
348 >
349 >       if (do_stress) then          
350 >
351 > #ifdef IS_MPI
352 >          id1 = tagRow(atom1)
353 >          id2 = tagColumn(atom2)
354 > #else
355 >          id1 = atom1
356 >          id2 = atom2
357 > #endif
358 >
359 >          if (molMembershipList(id1) .ne. molMembershipList(id2)) then
360 >
361 >             ! because the d vector is the rj - ri vector, and
362 >             ! because fxradial, fyradial, and fzradial are the
363 >             ! (positive) force on atom i (negative on atom j) we need
364 >             ! a negative sign here:
365 >
366 >             tau_Temp(1) = tau_Temp(1) - d(1) * fxradial
367 >             tau_Temp(2) = tau_Temp(2) - d(1) * fyradial
368 >             tau_Temp(3) = tau_Temp(3) - d(1) * fzradial
369 >             tau_Temp(4) = tau_Temp(4) - d(2) * fxradial
370 >             tau_Temp(5) = tau_Temp(5) - d(2) * fyradial
371 >             tau_Temp(6) = tau_Temp(6) - d(2) * fzradial
372 >             tau_Temp(7) = tau_Temp(7) - d(3) * fxradial
373 >             tau_Temp(8) = tau_Temp(8) - d(3) * fyradial
374 >             tau_Temp(9) = tau_Temp(9) - d(3) * fzradial
375 >
376 >             virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
377 >          endif
378 >       endif
379      endif
380 <  
380 >
381    end subroutine do_sticky_pair
382  
383    !! calculates the switching functions and their derivatives for a given
384    subroutine calc_sw_fnc(r, s, sp, dsdr, dspdr)
385 <          
385 >    
386      real (kind=dp), intent(in) :: r
387      real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr
388 <
388 >    
389      ! distances must be in angstroms
390      
391      if (r.lt.SSD_rl) then
392         s = 1.0d0
350       sp = 1.0d0
393         dsdr = 0.0d0
394 +    elseif (r.gt.SSD_ru) then
395 +       s = 0.0d0
396 +       dsdr = 0.0d0
397 +    else
398 +       s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
399 +            ((SSD_ru - SSD_rl)**3)
400 +       dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
401 +    endif
402 +
403 +    if (r.lt.SSD_rlp) then
404 +       sp = 1.0d0      
405         dspdr = 0.0d0
406      elseif (r.gt.SSD_rup) then
354       s = 0.0d0
407         sp = 0.0d0
356       dsdr = 0.0d0
408         dspdr = 0.0d0
409      else
410 <       sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_rup-r)**2) / &
411 <            ((SSD_rup - SSD_rl)**3)
412 <       dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rl)/((SSD_rup - SSD_rl)**3)
362 <      
363 <       if (r.gt.SSD_ru) then
364 <          s = 0.0d0
365 <          dsdr = 0.0d0
366 <       else
367 <          s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
368 <               ((SSD_ru - SSD_rl)**3)
369 <          dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
370 <       endif
410 >       sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rlp) * (SSD_rup-r)**2) / &
411 >            ((SSD_rup - SSD_rlp)**3)
412 >       dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rlp)/((SSD_rup - SSD_rlp)**3)      
413      endif
414      
415      return

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines