ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/do_Forces.F90
(Generate patch)

Comparing trunk/OOPSE/libmdtools/do_Forces.F90 (file contents):
Revision 1113 by tim, Thu Apr 15 16:18:26 2004 UTC vs.
Revision 1197 by gezelter, Wed May 26 16:41:23 2004 UTC

# Line 4 | Line 4
4  
5   !! @author Charles F. Vardeman II
6   !! @author Matthew Meineke
7 < !! @version $Id: do_Forces.F90,v 1.49 2004-04-15 16:18:26 tim Exp $, $Date: 2004-04-15 16:18:26 $, $Name: not supported by cvs2svn $, $Revision: 1.49 $
7 > !! @version $Id: do_Forces.F90,v 1.62 2004-05-26 16:41:23 gezelter Exp $, $Date: 2004-05-26 16:41:23 $, $Name: not supported by cvs2svn $, $Revision: 1.62 $
8  
9   module do_Forces
10    use force_globals
11    use simulation
12    use definitions
13    use atype_module
14 +  use switcheroo
15    use neighborLists  
16    use lj
17    use sticky_pair
# Line 30 | Line 31 | module do_Forces
31  
32   #define __FORTRAN90
33   #include "fForceField.h"
34 + #include "fSwitchingFunction.h"
35 +
36 +  INTEGER, PARAMETER:: PREPAIR_LOOP = 1
37 +  INTEGER, PARAMETER:: PAIR_LOOP    = 2
38  
39    logical, save :: haveRlist = .false.
40    logical, save :: haveNeighborList = .false.
# Line 55 | Line 60 | module do_Forces
60    logical, save :: SIM_requires_prepair_calc
61    logical, save :: SIM_uses_directional_atoms
62    logical, save :: SIM_uses_PBC
63 +  logical, save :: SIM_uses_molecular_cutoffs
64  
65    real(kind=dp), save :: rlist, rlistsq
66  
# Line 62 | Line 68 | module do_Forces
68    public :: do_force_loop
69    public :: setRlistDF
70  
65
71   #ifdef PROFILE
72    public :: getforcetime
73    real, save :: forceTime = 0
# Line 160 | Line 165 | contains
165      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
166      SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
167      SIM_uses_PBC = SimUsesPBC()
168 +    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
169  
170      haveSIMvariables = .true.
171  
# Line 356 | Line 362 | contains
362         endif
363         haveNeighborList = .true.
364      endif
365 +
366      
367 +    
368    end subroutine init_FF
369    
370  
371    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
372    !------------------------------------------------------------->
373 <  subroutine do_force_loop(q, A, u_l, f, t, tau, pot, do_pot_c, do_stress_c, &
374 <       error)
373 >  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
374 >       do_pot_c, do_stress_c, error)
375      !! Position array provided by C, dimensioned by getNlocal
376 <    real ( kind = dp ), dimension(3,nLocal) :: q
376 >    real ( kind = dp ), dimension(3, nLocal) :: q
377 >    !! molecular center-of-mass position array
378 >    real ( kind = dp ), dimension(3, nGroup) :: q_group
379      !! Rotation Matrix for each long range particle in simulation.
380 <    real( kind = dp), dimension(9,nLocal) :: A    
380 >    real( kind = dp), dimension(9, nLocal) :: A    
381      !! Unit vectors for dipoles (lab frame)
382      real( kind = dp ), dimension(3,nLocal) :: u_l
383      !! Force array provided by C, dimensioned by getNlocal
# Line 381 | Line 391 | contains
391      logical ( kind = 2) :: do_pot_c, do_stress_c
392      logical :: do_pot
393      logical :: do_stress
394 +    logical :: in_switching_region
395   #ifdef IS_MPI
396      real( kind = DP ) :: pot_local
397      integer :: nrow
398      integer :: ncol
399      integer :: nprocs
400 +    integer :: nrow_group
401 +    integer :: ncol_group
402   #endif
403      integer :: natoms    
404      logical :: update_nlist  
405 <    integer :: i, j, jbeg, jend, jnab
405 >    integer :: i, j, jstart, jend, jnab
406 >    integer :: istart, iend
407 >    integer :: ia, jb, atom1, atom2
408      integer :: nlist
409 <    real( kind = DP ) ::  rijsq
410 <    real(kind=dp),dimension(3) :: d
409 >    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
410 >    real( kind = DP ) :: sw, dswdr, swderiv, mf
411 >    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
412      real(kind=dp) :: rfpot, mu_i, virial
413 <    integer :: me_i, me_j
413 >    integer :: me_i, me_j, n_in_i, n_in_j
414      logical :: is_dp_i
415      integer :: neighborListSize
416      integer :: listerror, error
417      integer :: localError
418      integer :: propPack_i, propPack_j
419 +    integer :: loopStart, loopEnd, loop
420  
421      real(kind=dp) :: listSkin = 1.0  
422 <
422 >    
423      !! initialize local variables  
424 <
424 >    
425   #ifdef IS_MPI
426      pot_local = 0.0_dp
427      nrow   = getNrow(plan_row)
428      ncol   = getNcol(plan_col)
429 +    nrow_group   = getNrowGroup(plan_row)
430 +    ncol_group   = getNcolGroup(plan_col)
431   #else
432      natoms = nlocal
433   #endif
434 <
434 >    
435      call doReadyCheck(localError)
436      if ( localError .ne. 0 ) then
437         call handleError("do_force_loop", "Not Initialized")
# Line 420 | Line 439 | contains
439         return
440      end if
441      call zero_work_arrays()
442 <
442 >        
443      do_pot = do_pot_c
444      do_stress = do_stress_c
445 <
445 >    
446      ! Gather all information needed by all force loops:
447      
448   #ifdef IS_MPI    
449 +    
450 +    call gather(q, q_Row, plan_row3d)
451 +    call gather(q, q_Col, plan_col3d)
452  
453 <    call gather(q,q_Row,plan_row3d)
454 <    call gather(q,q_Col,plan_col3d)
453 >    call gather(q_group, q_group_Row, plan_row_Group_3d)
454 >    call gather(q_group, q_group_Col, plan_col_Group_3d)
455          
456      if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
457         call gather(u_l,u_l_Row,plan_row3d)
# Line 440 | Line 462 | contains
462      endif
463      
464   #endif
465 <
466 < !! Begin force loop timing:
465 >    
466 >    !! Begin force loop timing:
467   #ifdef PROFILE
468      call cpu_time(forceTimeInitial)
469      nloops = nloops + 1
470   #endif
449  
450    if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
451       !! See if we need to update neighbor lists
452       call checkNeighborList(nlocal, q, listSkin, update_nlist)  
453       !! if_mpi_gather_stuff_for_prepair
454       !! do_prepair_loop_if_needed
455       !! if_mpi_scatter_stuff_from_prepair
456       !! if_mpi_gather_stuff_from_prepair_to_main_loop
457    
458 !--------------------PREFORCE LOOP----------->>>>>>>>>>>>>>>>>>>>>>>>>>>
459 #ifdef IS_MPI
471      
472 <    if (update_nlist) then
473 <      
474 <       !! save current configuration, construct neighbor list,
475 <       !! and calculate forces
476 <       call saveNeighborList(nlocal, q)
472 >    loopEnd = PAIR_LOOP
473 >    if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
474 >       loopStart = PREPAIR_LOOP
475 >    else
476 >       loopStart = PAIR_LOOP
477 >    endif
478 >
479 >    do loop = loopStart, loopEnd
480 >
481 >       ! See if we need to update neighbor lists
482 >       ! (but only on the first time through):
483 >       if (loop .eq. loopStart) then
484 >          call checkNeighborList(nGroup, q_group, listSkin, update_nlist)
485 >       endif
486        
487 <       neighborListSize = size(list)
488 <       nlist = 0      
487 >       if (update_nlist) then
488 >          !! save current configuration and construct neighbor list
489 >          call saveNeighborList(nGroup, q_group)          
490 >          neighborListSize = size(list)
491 >          nlist = 0
492 >       endif
493        
494 <       do i = 1, nrow
495 <          point(i) = nlist + 1
494 >       istart = 1
495 > #ifdef IS_MPI
496 >       iend = nrow_group
497 > #else
498 >       iend = nGroup - 1
499 > #endif
500 >       outer: do i = istart, iend
501            
502 <          prepair_inner: do j = 1, ncol
503 <            
504 <             if (skipThisPair(i,j)) cycle prepair_inner
505 <            
506 <             call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
507 <            
508 <             if (rijsq < rlistsq) then            
509 <                
510 <                nlist = nlist + 1
511 <                
512 <                if (nlist > neighborListSize) then
513 <                   call expandNeighborList(nlocal, listerror)
514 <                   if (listerror /= 0) then
515 <                      error = -1
516 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
517 <                      return
518 <                   end if
519 <                   neighborListSize = size(list)
520 <                endif
521 <                
522 <                list(nlist) = j
523 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot_local)                      
502 >          if (update_nlist) point(i) = nlist + 1
503 >          
504 >          n_in_i = groupStart(i+1) - groupStart(i)
505 >          
506 >          if (update_nlist) then
507 > #ifdef IS_MPI
508 >             jstart = 1
509 >             jend = ncol_group
510 > #else
511 >             jstart = i+1
512 >             jend = nGroup
513 > #endif
514 >          else            
515 >             jstart = point(i)
516 >             jend = point(i+1) - 1
517 >             ! make sure group i has neighbors
518 >             if (jstart .gt. jend) cycle outer
519 >          endif
520 >          
521 >          do jnab = jstart, jend
522 >             if (update_nlist) then
523 >                j = jnab
524 >             else
525 >                j = list(jnab)
526               endif
527 <          enddo prepair_inner
528 <       enddo
529 <
499 <       point(nrow + 1) = nlist + 1
500 <      
501 <    else  !! (of update_check)
502 <
503 <       ! use the list to find the neighbors
504 <       do i = 1, nrow
505 <          JBEG = POINT(i)
506 <          JEND = POINT(i+1) - 1
507 <          ! check thiat molecule i has neighbors
508 <          if (jbeg .le. jend) then
509 <            
510 <             do jnab = jbeg, jend
511 <                j = list(jnab)
512 <
513 <                call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
514 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, &
515 <                     u_l, A, f, t, pot_local)
516 <
517 <             enddo
518 <          endif
519 <       enddo
520 <    endif
521 <    
527 > #ifdef IS_MPI
528 >             call get_interatomic_vector(q_group_Row(:,i), &
529 >                  q_group_Col(:,j), d_grp, rgrpsq)
530   #else
531 <    
532 <    if (update_nlist) then
533 <      
534 <       ! save current configuration, contruct neighbor list,
535 <       ! and calculate forces
536 <       call saveNeighborList(natoms, q)
537 <      
538 <       neighborListSize = size(list)
539 <  
540 <       nlist = 0
541 <
542 <       do i = 1, natoms-1
543 <          point(i) = nlist + 1
544 <          
545 <          prepair_inner: do j = i+1, natoms
546 <            
547 <             if (skipThisPair(i,j))  cycle prepair_inner
548 <                          
541 <             call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
542 <          
543 <
544 <             if (rijsq < rlistsq) then
545 <
546 <          
547 <                nlist = nlist + 1
548 <              
549 <                if (nlist > neighborListSize) then
550 <                   call expandNeighborList(natoms, listerror)
551 <                   if (listerror /= 0) then
552 <                      error = -1
553 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
554 <                      return
555 <                   end if
556 <                   neighborListSize = size(list)
531 >             call get_interatomic_vector(q_group(:,i), &
532 >                  q_group(:,j), d_grp, rgrpsq)
533 > #endif
534 >             if (rgrpsq < rlistsq) then
535 >                if (update_nlist) then
536 >                   nlist = nlist + 1
537 >                  
538 >                   if (nlist > neighborListSize) then
539 >                      call expandNeighborList(nGroup, listerror)
540 >                      if (listerror /= 0) then
541 >                         error = -1
542 >                         write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
543 >                         return
544 >                      end if
545 >                      neighborListSize = size(list)
546 >                   endif
547 >                  
548 >                   list(nlist) = j
549                  endif
550                  
551 <                list(nlist) = j
551 >                if (loop .eq. PAIR_LOOP) then
552 >                   vij = 0.0d0
553 >                   fij(1:3) = 0.0d0
554 >                endif
555                  
556 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, &
557 <                        u_l, A, f, t, pot)
556 >                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
557 >                     in_switching_region)
558                  
559 <             endif
560 <          enddo prepair_inner
561 <       enddo
562 <      
563 <       point(natoms) = nlist + 1
564 <      
565 <    else !! (update)
566 <  
567 <       ! use the list to find the neighbors
568 <       do i = 1, natoms-1
569 <          JBEG = POINT(i)
570 <          JEND = POINT(i+1) - 1
571 <          ! check thiat molecule i has neighbors
572 <          if (jbeg .le. jend) then
573 <            
574 <             do jnab = jbeg, jend
580 <                j = list(jnab)
581 <
582 <                call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
583 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, &
584 <                     u_l, A, f, t, pot)
585 <
586 <             enddo
587 <          endif
588 <       enddo
589 <    endif    
590 < #endif
591 <    !! Do rest of preforce calculations
592 <    !! do necessary preforce calculations  
593 <    call do_preforce(nlocal,pot)
594 <   ! we have already updated the neighbor list set it to false...
595 <   update_nlist = .false.
596 <    else
597 <       !! See if we need to update neighbor lists for non pre-pair
598 <       call checkNeighborList(nlocal, q, listSkin, update_nlist)  
599 <    endif
600 <
601 <
602 <
603 <
604 <
605 < !---------------------------------MAIN Pair LOOP->>>>>>>>>>>>>>>>>>>>>>>>>>>>
606 <
607 <
608 <
609 <
610 <  
559 >                n_in_j = groupStart(j+1) - groupStart(j)
560 >                
561 >                do ia = groupStart(i), groupStart(i+1)-1
562 >                  
563 >                   atom1 = groupList(ia)
564 >                  
565 >                   inner: do jb = groupStart(j), groupStart(j+1)-1
566 >                      
567 >                      atom2 = groupList(jb)
568 >                      
569 >                      if (skipThisPair(atom1, atom2)) cycle inner
570 >                      
571 >                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
572 >                         d_atm(1:3) = d_grp(1:3)
573 >                         ratmsq = rgrpsq
574 >                      else
575   #ifdef IS_MPI
576 <    
577 <    if (update_nlist) then
578 <       !! save current configuration, construct neighbor list,
579 <       !! and calculate forces
580 <       call saveNeighborList(nlocal, q)
581 <      
582 <       neighborListSize = size(list)
583 <       nlist = 0      
584 <      
585 <       do i = 1, nrow
586 <
587 <          point(i) = nlist + 1
588 <          
589 <          inner: do j = 1, ncol
590 <            
591 <             if (skipThisPair(i,j)) cycle inner
592 <            
593 <             call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
594 <            
595 <             if (rijsq < rlistsq) then            
576 >                         call get_interatomic_vector(q_Row(:,atom1), &
577 >                              q_Col(:,atom2), d_atm, ratmsq)
578 > #else
579 >                         call get_interatomic_vector(q(:,atom1), &
580 >                              q(:,atom2), d_atm, ratmsq)
581 > #endif
582 >                      endif
583 >                      if (loop .eq. PREPAIR_LOOP) then
584 > #ifdef IS_MPI                      
585 >                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
586 >                              rgrpsq, d_grp, do_pot, do_stress, &
587 >                              u_l, A, f, t, pot_local)
588 > #else
589 >                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
590 >                              rgrpsq, d_grp, do_pot, do_stress, &
591 >                              u_l, A, f, t, pot)
592 > #endif                                              
593 >                      else
594 > #ifdef IS_MPI                      
595 >                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
596 >                              do_pot, &
597 >                              u_l, A, f, t, pot_local, vpair, fpair)
598 > #else
599 >                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
600 >                              do_pot,  &
601 >                              u_l, A, f, t, pot, vpair, fpair)
602 > #endif
603 >                         vij = vij + vpair
604 >                         fij(1:3) = fij(1:3) + fpair(1:3)
605 >                      endif
606 >                   enddo inner
607 >                enddo
608                  
609 <                nlist = nlist + 1
610 <                
611 <                if (nlist > neighborListSize) then
612 <                   call expandNeighborList(nlocal, listerror)
613 <                   if (listerror /= 0) then
614 <                      error = -1
615 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
616 <                      return
617 <                   end if
618 <                   neighborListSize = size(list)
609 >                if (loop .eq. PAIR_LOOP) then
610 >                   if (in_switching_region) then
611 >                      swderiv = vij*dswdr/rgrp
612 >                      fij(1) = fij(1) + swderiv*d_grp(1)
613 >                      fij(2) = fij(2) + swderiv*d_grp(2)
614 >                      fij(3) = fij(3) + swderiv*d_grp(3)
615 >                      
616 >                      do ia=groupStart(i), groupStart(i+1)-1
617 >                         atom1=groupList(ia)
618 >                         mf = mfact(atom1)
619 > #ifdef IS_MPI
620 >                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
621 >                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
622 >                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
623 > #else
624 >                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
625 >                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
626 >                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
627 > #endif
628 >                      enddo
629 >                      
630 >                      do jb=groupStart(j), groupStart(j+1)-1
631 >                         atom2=groupList(jb)
632 >                         mf = mfact(atom2)
633 > #ifdef IS_MPI
634 >                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
635 >                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
636 >                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
637 > #else
638 >                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
639 >                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
640 >                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
641 > #endif
642 >                      enddo
643 >                   endif
644 >                  
645 >                   if (do_stress) call add_stress_tensor(d_grp, fij)
646                  endif
647 <                
648 <                list(nlist) = j
649 <                                
647 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
648 <                     u_l, A, f, t, pot_local)
649 <                
650 <             endif
651 <          enddo inner
652 <       enddo
653 <
654 <       point(nrow + 1) = nlist + 1
647 >             end if
648 >          enddo
649 >       enddo outer
650        
651 <    else  !! (of update_check)
652 <
653 <       ! use the list to find the neighbors
654 <       do i = 1, nrow
655 <          JBEG = POINT(i)
656 <          JEND = POINT(i+1) - 1
657 <          ! check thiat molecule i has neighbors
658 <          if (jbeg .le. jend) then
659 <            
660 <             do jnab = jbeg, jend
661 <                j = list(jnab)
667 <
668 <                call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
669 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
670 <                     u_l, A, f, t, pot_local)
671 <
672 <             enddo
651 >       if (update_nlist) then
652 > #ifdef IS_MPI
653 >          point(nrow_group + 1) = nlist + 1
654 > #else
655 >          point(nGroup) = nlist + 1
656 > #endif
657 >          if (loop .eq. PREPAIR_LOOP) then
658 >             ! we just did the neighbor list update on the first
659 >             ! pass, so we don't need to do it
660 >             ! again on the second pass
661 >             update_nlist = .false.                              
662            endif
663 <       enddo
675 <    endif
676 <    
677 < #else
678 <    
679 <    if (update_nlist) then
680 <
681 <       ! save current configuration, contruct neighbor list,
682 <       ! and calculate forces
683 <       call saveNeighborList(natoms, q)
684 <      
685 <       neighborListSize = size(list)
686 <  
687 <       nlist = 0
688 <      
689 <       do i = 1, natoms-1
690 <          point(i) = nlist + 1
691 <          
692 <          inner: do j = i+1, natoms
663 >       endif
664              
665 <             if (skipThisPair(i,j))  cycle inner
666 <                          
667 <             call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
697 <          
698 <
699 <             if (rijsq < rlistsq) then
700 <                
701 <                nlist = nlist + 1
702 <              
703 <                if (nlist > neighborListSize) then
704 <                   call expandNeighborList(natoms, listerror)
705 <                   if (listerror /= 0) then
706 <                      error = -1
707 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
708 <                      return
709 <                   end if
710 <                   neighborListSize = size(list)
711 <                endif
712 <                
713 <                list(nlist) = j
714 <                
715 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
716 <                        u_l, A, f, t, pot)
717 <                
718 <             endif
719 <          enddo inner
720 <       enddo
665 >       if (loop .eq. PREPAIR_LOOP) then
666 >          call do_preforce(nlocal, pot)
667 >       endif
668        
669 <       point(natoms) = nlist + 1
723 <      
724 <    else !! (update)
725 <      
726 <       ! use the list to find the neighbors
727 <       do i = 1, natoms-1
728 <          JBEG = POINT(i)
729 <          JEND = POINT(i+1) - 1
730 <          ! check thiat molecule i has neighbors
731 <          if (jbeg .le. jend) then
732 <            
733 <             do jnab = jbeg, jend
734 <                j = list(jnab)
735 <
736 <                call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
737 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
738 <                     u_l, A, f, t, pot)
739 <
740 <             enddo
741 <          endif
742 <       enddo
743 <    endif
669 >    enddo
670      
671 < #endif
746 <    
747 <    ! phew, done with main loop.
748 <
749 < !! Do timing
671 >    !! Do timing
672   #ifdef PROFILE
673      call cpu_time(forceTimeFinal)
674      forceTime = forceTime + forceTimeFinal - forceTimeInitial
675 < #endif
676 <
755 <
675 > #endif    
676 >    
677   #ifdef IS_MPI
678      !!distribute forces
679 <  
679 >    
680      f_temp = 0.0_dp
681      call scatter(f_Row,f_temp,plan_row3d)
682      do i = 1,nlocal
683         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
684      end do
685 <
685 >    
686      f_temp = 0.0_dp
687      call scatter(f_Col,f_temp,plan_col3d)
688      do i = 1,nlocal
# Line 785 | Line 706 | contains
706      if (do_pot) then
707         ! scatter/gather pot_row into the members of my column
708         call scatter(pot_Row, pot_Temp, plan_row)
709 <
709 >      
710         ! scatter/gather pot_local into all other procs
711         ! add resultant to get total pot
712         do i = 1, nlocal
# Line 793 | Line 714 | contains
714         enddo
715        
716         pot_Temp = 0.0_DP
717 <
717 >      
718         call scatter(pot_Col, pot_Temp, plan_col)
719         do i = 1, nlocal
720            pot_local = pot_local + pot_Temp(i)
721         enddo
722 <
723 <    endif    
722 >      
723 >    endif
724   #endif
725 <
725 >    
726      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
727        
728         if (FF_uses_RF .and. SIM_uses_RF) then
729 <
729 >          
730   #ifdef IS_MPI
731            call scatter(rf_Row,rf,plan_row3d)
732            call scatter(rf_Col,rf_Temp,plan_col3d)
# Line 815 | Line 736 | contains
736   #endif
737            
738            do i = 1, nLocal
739 <
739 >            
740               rfpot = 0.0_DP
741   #ifdef IS_MPI
742               me_i = atid_row(i)
743   #else
744               me_i = atid(i)
745   #endif
746 <
746 >            
747               if (PropertyMap(me_i)%is_DP) then
748 <
748 >                
749                  mu_i = PropertyMap(me_i)%dipole_moment
750 <
750 >                
751                  !! The reaction field needs to include a self contribution
752                  !! to the field:
753                  call accumulate_self_rf(i, mu_i, u_l)
# Line 843 | Line 764 | contains
764            enddo
765         endif
766      endif
767 <
768 <
767 >    
768 >    
769   #ifdef IS_MPI
770 <
770 >    
771      if (do_pot) then
772         pot = pot + pot_local
773         !! we assume the c code will do the allreduce to get the total potential
774         !! we could do it right here if we needed to...
775      endif
776 <
776 >    
777      if (do_stress) then
778 <      call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
778 >       call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
779              mpi_comm_world,mpi_err)
780         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
781              mpi_comm_world,mpi_err)
782      endif
783 <
783 >    
784   #else
785 <
785 >    
786      if (do_stress) then
787         tau = tau_Temp
788         virial = virial_Temp
789      endif
790      
791   #endif
792 <    
872 <    
873 <    
792 >      
793    end subroutine do_force_loop
794 +  
795 +  subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
796 +       u_l, A, f, t, pot, vpair, fpair)
797  
798 <  subroutine do_pair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot)
799 <
800 <    real( kind = dp ) :: pot
798 >    real( kind = dp ) :: pot, vpair, sw
799 >    real( kind = dp ), dimension(3) :: fpair
800 >    real( kind = dp ), dimension(nLocal)   :: mfact
801      real( kind = dp ), dimension(3,nLocal) :: u_l
802 <    real (kind=dp), dimension(9,nLocal) :: A
803 <    real (kind=dp), dimension(3,nLocal) :: f
804 <    real (kind=dp), dimension(3,nLocal) :: t
802 >    real( kind = dp ), dimension(9,nLocal) :: A
803 >    real( kind = dp ), dimension(3,nLocal) :: f
804 >    real( kind = dp ), dimension(3,nLocal) :: t
805  
806 <    logical, intent(inout) :: do_pot, do_stress
806 >    logical, intent(inout) :: do_pot
807      integer, intent(in) :: i, j
808 <    real ( kind = dp ), intent(inout)    :: rijsq
808 >    real ( kind = dp ), intent(inout) :: rijsq
809      real ( kind = dp )                :: r
810      real ( kind = dp ), intent(inout) :: d(3)
811      integer :: me_i, me_j
812  
813      r = sqrt(rijsq)
814 +    vpair = 0.0d0
815 +    fpair(1:3) = 0.0d0
816  
817   #ifdef IS_MPI
818      if (tagRow(i) .eq. tagColumn(j)) then
# Line 904 | Line 828 | contains
828      if (FF_uses_LJ .and. SIM_uses_LJ) then
829        
830         if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
831 <          call do_lj_pair(i, j, d, r, rijsq, pot, f, do_pot, do_stress)
831 >          !write(*,*) 'calling lj with'
832 >          !write(*,*) i, j, r, rijsq
833 >          !write(*,'(3es12.3)') d(1), d(2), d(3)
834 >          !write(*,'(3es12.3)') sw, vpair, pot
835 >          !write(*,*)
836 >
837 >          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
838         endif
839        
840      endif
# Line 912 | Line 842 | contains
842      if (FF_uses_charges .and. SIM_uses_charges) then
843        
844         if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
845 <          call do_charge_pair(i, j, d, r, rijsq, pot, f, do_pot, do_stress)
845 >          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
846         endif
847        
848      endif
# Line 920 | Line 850 | contains
850      if (FF_uses_dipoles .and. SIM_uses_dipoles) then
851        
852         if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
853 <          call do_dipole_pair(i, j, d, r, rijsq, pot, u_l, f, t, &
854 <               do_pot, do_stress)
853 >          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
854 >               do_pot)
855            if (FF_uses_RF .and. SIM_uses_RF) then
856 <             call accumulate_rf(i, j, r, u_l)
857 <             call rf_correct_forces(i, j, d, r, u_l, f, do_stress)
856 >             call accumulate_rf(i, j, r, u_l, sw)
857 >             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
858            endif          
859         endif
860  
# Line 933 | Line 863 | contains
863      if (FF_uses_Sticky .and. SIM_uses_sticky) then
864  
865         if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
866 <          call do_sticky_pair(i, j, d, r, rijsq, A, pot, f, t, &
867 <               do_pot, do_stress)
866 >          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
867 >               do_pot)
868         endif
869  
870      endif
# Line 943 | Line 873 | contains
873      if (FF_uses_GB .and. SIM_uses_GB) then
874        
875         if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
876 <          call do_gb_pair(i, j, d, r, rijsq, u_l, pot, f, t, &
877 <               do_pot, do_stress)          
876 >          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
877 >               do_pot)
878         endif
879  
880      endif
# Line 952 | Line 882 | contains
882      if (FF_uses_EAM .and. SIM_uses_EAM) then
883        
884         if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
885 <          call do_eam_pair(i, j, d, r, rijsq, pot, f, do_pot, do_stress)
885 >          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
886 >               do_pot)
887         endif
888        
889      endif
890 <
890 >    
891    end subroutine do_pair
892  
893 +  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
894 +       do_pot, do_stress, u_l, A, f, t, pot)
895  
896 <
964 <  subroutine do_prepair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot)
965 <   real( kind = dp ) :: pot
896 >   real( kind = dp ) :: pot, sw
897     real( kind = dp ), dimension(3,nLocal) :: u_l
898     real (kind=dp), dimension(9,nLocal) :: A
899     real (kind=dp), dimension(3,nLocal) :: f
# Line 970 | Line 901 | contains
901    
902     logical, intent(inout) :: do_pot, do_stress
903     integer, intent(in) :: i, j
904 <   real ( kind = dp ), intent(inout)    :: rijsq
905 <   real ( kind = dp )                :: r
906 <   real ( kind = dp ), intent(inout) :: d(3)
904 >   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
905 >   real ( kind = dp )                :: r, rc
906 >   real ( kind = dp ), intent(inout) :: d(3), dc(3)
907    
908     logical :: is_EAM_i, is_EAM_j
909    
910     integer :: me_i, me_j
911    
912 <   r = sqrt(rijsq)
912 >
913 >    r = sqrt(rijsq)
914 >    if (SIM_uses_molecular_cutoffs) then
915 >       rc = sqrt(rcijsq)
916 >    else
917 >       rc = r
918 >    endif
919    
920  
921   #ifdef IS_MPI
922     if (tagRow(i) .eq. tagColumn(j)) then
923 <      write(0,*) 'do_pair is doing', i , j, tagRow(i), tagColumn(j)
923 >      write(0,*) 'do_prepair is doing', i , j, tagRow(i), tagColumn(j)
924     endif
925    
926     me_i = atid_row(i)
# Line 995 | Line 932 | contains
932     me_j = atid(j)
933    
934   #endif
935 <    
935 >  
936     if (FF_uses_EAM .and. SIM_uses_EAM) then
937 <
937 >      
938        if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
939             call calc_EAM_prepair_rho(i, j, d, r, rijsq )
940 <
940 >      
941     endif
942    
943   end subroutine do_prepair
1007
1008
1009
1010
1011  subroutine do_preforce(nlocal,pot)
1012    integer :: nlocal
1013    real( kind = dp ) :: pot
1014
1015    if (FF_uses_EAM .and. SIM_uses_EAM) then
1016       call calc_EAM_preforce_Frho(nlocal,pot)
1017    endif
1018
1019
1020  end subroutine do_preforce
1021  
1022  
1023  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1024    
1025    real (kind = dp), dimension(3) :: q_i
1026    real (kind = dp), dimension(3) :: q_j
1027    real ( kind = dp ), intent(out) :: r_sq
1028    real( kind = dp ) :: d(3), scaled(3)
1029    integer i
1030
1031    d(1:3) = q_j(1:3) - q_i(1:3)
1032
1033    ! Wrap back into periodic box if necessary
1034    if ( SIM_uses_PBC ) then
1035      
1036       if( .not.boxIsOrthorhombic ) then
1037          ! calc the scaled coordinates.
1038          
1039          scaled = matmul(HmatInv, d)
1040          
1041          ! wrap the scaled coordinates
1042
1043          scaled = scaled  - anint(scaled)
1044          
1045
1046          ! calc the wrapped real coordinates from the wrapped scaled
1047          ! coordinates
1048
1049          d = matmul(Hmat,scaled)
1050
1051       else
1052          ! calc the scaled coordinates.
1053          
1054          do i = 1, 3
1055             scaled(i) = d(i) * HmatInv(i,i)
1056            
1057             ! wrap the scaled coordinates
1058            
1059             scaled(i) = scaled(i) - anint(scaled(i))
1060            
1061             ! calc the wrapped real coordinates from the wrapped scaled
1062             ! coordinates
1063
1064             d(i) = scaled(i)*Hmat(i,i)
1065          enddo
1066       endif
1067      
1068    endif
1069    
1070    r_sq = dot_product(d,d)
1071    
1072  end subroutine get_interatomic_vector
1073  
1074  subroutine zero_work_arrays()
1075    
1076 #ifdef IS_MPI
1077
1078    q_Row = 0.0_dp
1079    q_Col = 0.0_dp  
1080    
1081    u_l_Row = 0.0_dp
1082    u_l_Col = 0.0_dp
1083    
1084    A_Row = 0.0_dp
1085    A_Col = 0.0_dp
1086    
1087    f_Row = 0.0_dp
1088    f_Col = 0.0_dp
1089    f_Temp = 0.0_dp
1090      
1091    t_Row = 0.0_dp
1092    t_Col = 0.0_dp
1093    t_Temp = 0.0_dp
944  
1095    pot_Row = 0.0_dp
1096    pot_Col = 0.0_dp
1097    pot_Temp = 0.0_dp
1098
1099    rf_Row = 0.0_dp
1100    rf_Col = 0.0_dp
1101    rf_Temp = 0.0_dp
1102
1103 #endif
1104
945  
946 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
947 <       call clean_EAM()
948 <    endif
949 <
950 <
951 <
952 <
953 <
954 <    rf = 0.0_dp
955 <    tau_Temp = 0.0_dp
956 <    virial_Temp = 0.0_dp
957 <  end subroutine zero_work_arrays
958 <  
959 <  function skipThisPair(atom1, atom2) result(skip_it)
960 <    integer, intent(in) :: atom1
961 <    integer, intent(in), optional :: atom2
962 <    logical :: skip_it
963 <    integer :: unique_id_1, unique_id_2
964 <    integer :: me_i,me_j
965 <    integer :: i
966 <
967 <    skip_it = .false.
968 <    
969 <    !! there are a number of reasons to skip a pair or a particle
970 <    !! mostly we do this to exclude atoms who are involved in short
971 <    !! range interactions (bonds, bends, torsions), but we also need
972 <    !! to exclude some overcounted interactions that result from
973 <    !! the parallel decomposition
974 <    
975 < #ifdef IS_MPI
976 <    !! in MPI, we have to look up the unique IDs for each atom
977 <    unique_id_1 = tagRow(atom1)
978 < #else
979 <    !! in the normal loop, the atom numbers are unique
980 <    unique_id_1 = atom1
981 < #endif
982 <
983 <    !! We were called with only one atom, so just check the global exclude
984 <    !! list for this atom
985 <    if (.not. present(atom2)) then
986 <       do i = 1, nExcludes_global
987 <          if (excludesGlobal(i) == unique_id_1) then
988 <             skip_it = .true.
989 <             return
990 <          end if
991 <       end do
992 <       return
993 <    end if
994 <    
995 < #ifdef IS_MPI
996 <    unique_id_2 = tagColumn(atom2)
997 < #else
998 <    unique_id_2 = atom2
999 < #endif
946 > subroutine do_preforce(nlocal,pot)
947 >   integer :: nlocal
948 >   real( kind = dp ) :: pot
949 >  
950 >   if (FF_uses_EAM .and. SIM_uses_EAM) then
951 >      call calc_EAM_preforce_Frho(nlocal,pot)
952 >   endif
953 >  
954 >  
955 > end subroutine do_preforce
956 >
957 >
958 > subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
959 >  
960 >   real (kind = dp), dimension(3) :: q_i
961 >   real (kind = dp), dimension(3) :: q_j
962 >   real ( kind = dp ), intent(out) :: r_sq
963 >   real( kind = dp ) :: d(3), scaled(3)
964 >   integer i
965 >  
966 >   d(1:3) = q_j(1:3) - q_i(1:3)
967 >  
968 >   ! Wrap back into periodic box if necessary
969 >   if ( SIM_uses_PBC ) then
970 >      
971 >      if( .not.boxIsOrthorhombic ) then
972 >         ! calc the scaled coordinates.
973 >        
974 >         scaled = matmul(HmatInv, d)
975 >        
976 >         ! wrap the scaled coordinates
977 >        
978 >         scaled = scaled  - anint(scaled)
979 >        
980 >        
981 >         ! calc the wrapped real coordinates from the wrapped scaled
982 >         ! coordinates
983 >        
984 >         d = matmul(Hmat,scaled)
985 >        
986 >      else
987 >         ! calc the scaled coordinates.
988 >        
989 >         do i = 1, 3
990 >            scaled(i) = d(i) * HmatInv(i,i)
991 >            
992 >            ! wrap the scaled coordinates
993 >            
994 >            scaled(i) = scaled(i) - anint(scaled(i))
995 >            
996 >            ! calc the wrapped real coordinates from the wrapped scaled
997 >            ! coordinates
998 >            
999 >            d(i) = scaled(i)*Hmat(i,i)
1000 >         enddo
1001 >      endif
1002 >      
1003 >   endif
1004 >  
1005 >   r_sq = dot_product(d,d)
1006 >  
1007 > end subroutine get_interatomic_vector
1008 >
1009 > subroutine zero_work_arrays()
1010 >  
1011 > #ifdef IS_MPI
1012 >  
1013 >   q_Row = 0.0_dp
1014 >   q_Col = 0.0_dp
1015  
1016 +   q_group_Row = 0.0_dp
1017 +   q_group_Col = 0.0_dp  
1018 +  
1019 +   u_l_Row = 0.0_dp
1020 +   u_l_Col = 0.0_dp
1021 +  
1022 +   A_Row = 0.0_dp
1023 +   A_Col = 0.0_dp
1024 +  
1025 +   f_Row = 0.0_dp
1026 +   f_Col = 0.0_dp
1027 +   f_Temp = 0.0_dp
1028 +  
1029 +   t_Row = 0.0_dp
1030 +   t_Col = 0.0_dp
1031 +   t_Temp = 0.0_dp
1032 +  
1033 +   pot_Row = 0.0_dp
1034 +   pot_Col = 0.0_dp
1035 +   pot_Temp = 0.0_dp
1036 +  
1037 +   rf_Row = 0.0_dp
1038 +   rf_Col = 0.0_dp
1039 +   rf_Temp = 0.0_dp
1040 +  
1041 + #endif
1042 +
1043 +   if (FF_uses_EAM .and. SIM_uses_EAM) then
1044 +      call clean_EAM()
1045 +   endif
1046 +  
1047 +   rf = 0.0_dp
1048 +   tau_Temp = 0.0_dp
1049 +   virial_Temp = 0.0_dp
1050 + end subroutine zero_work_arrays
1051 +
1052 + function skipThisPair(atom1, atom2) result(skip_it)
1053 +   integer, intent(in) :: atom1
1054 +   integer, intent(in), optional :: atom2
1055 +   logical :: skip_it
1056 +   integer :: unique_id_1, unique_id_2
1057 +   integer :: me_i,me_j
1058 +   integer :: i
1059 +  
1060 +   skip_it = .false.
1061 +  
1062 +   !! there are a number of reasons to skip a pair or a particle
1063 +   !! mostly we do this to exclude atoms who are involved in short
1064 +   !! range interactions (bonds, bends, torsions), but we also need
1065 +   !! to exclude some overcounted interactions that result from
1066 +   !! the parallel decomposition
1067 +  
1068   #ifdef IS_MPI
1069 <    !! this situation should only arise in MPI simulations
1070 <    if (unique_id_1 == unique_id_2) then
1071 <       skip_it = .true.
1072 <       return
1073 <    end if
1167 <    
1168 <    !! this prevents us from doing the pair on multiple processors
1169 <    if (unique_id_1 < unique_id_2) then
1170 <       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1171 <          skip_it = .true.
1172 <          return
1173 <       endif
1174 <    else                
1175 <       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1176 <          skip_it = .true.
1177 <          return
1178 <       endif
1179 <    endif
1069 >   !! in MPI, we have to look up the unique IDs for each atom
1070 >   unique_id_1 = tagRow(atom1)
1071 > #else
1072 >   !! in the normal loop, the atom numbers are unique
1073 >   unique_id_1 = atom1
1074   #endif
1075 +  
1076 +   !! We were called with only one atom, so just check the global exclude
1077 +   !! list for this atom
1078 +   if (.not. present(atom2)) then
1079 +      do i = 1, nExcludes_global
1080 +         if (excludesGlobal(i) == unique_id_1) then
1081 +            skip_it = .true.
1082 +            return
1083 +         end if
1084 +      end do
1085 +      return
1086 +   end if
1087 +  
1088 + #ifdef IS_MPI
1089 +   unique_id_2 = tagColumn(atom2)
1090 + #else
1091 +   unique_id_2 = atom2
1092 + #endif
1093 +  
1094 + #ifdef IS_MPI
1095 +   !! this situation should only arise in MPI simulations
1096 +   if (unique_id_1 == unique_id_2) then
1097 +      skip_it = .true.
1098 +      return
1099 +   end if
1100 +  
1101 +   !! this prevents us from doing the pair on multiple processors
1102 +   if (unique_id_1 < unique_id_2) then
1103 +      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1104 +         skip_it = .true.
1105 +         return
1106 +      endif
1107 +   else                
1108 +      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1109 +         skip_it = .true.
1110 +         return
1111 +      endif
1112 +   endif
1113 + #endif
1114 +  
1115 +   !! the rest of these situations can happen in all simulations:
1116 +   do i = 1, nExcludes_global      
1117 +      if ((excludesGlobal(i) == unique_id_1) .or. &
1118 +           (excludesGlobal(i) == unique_id_2)) then
1119 +         skip_it = .true.
1120 +         return
1121 +      endif
1122 +   enddo
1123 +  
1124 +   do i = 1, nSkipsForAtom(unique_id_1)
1125 +      if (skipsForAtom(unique_id_1, i) .eq. unique_id_2) then
1126 +         skip_it = .true.
1127 +         return
1128 +      endif
1129 +   end do
1130 +  
1131 +   return
1132 + end function skipThisPair
1133  
1134 <    !! the rest of these situations can happen in all simulations:
1135 <    do i = 1, nExcludes_global      
1136 <       if ((excludesGlobal(i) == unique_id_1) .or. &
1137 <            (excludesGlobal(i) == unique_id_2)) then
1138 <          skip_it = .true.
1139 <          return
1140 <       endif
1141 <    enddo
1142 <
1143 <    do i = 1, nExcludes_local
1144 <       if (excludesLocal(1,i) == unique_id_1) then
1145 <          if (excludesLocal(2,i) == unique_id_2) then
1146 <             skip_it = .true.
1147 <             return
1148 <          endif
1149 <       else
1198 <          if (excludesLocal(1,i) == unique_id_2) then
1199 <             if (excludesLocal(2,i) == unique_id_1) then
1200 <                skip_it = .true.
1201 <                return
1202 <             endif
1203 <          endif
1204 <       endif
1205 <    end do
1206 <    
1207 <    return
1208 <  end function skipThisPair
1209 <
1210 <  function FF_UsesDirectionalAtoms() result(doesit)
1211 <    logical :: doesit
1212 <    doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1213 <         FF_uses_GB .or. FF_uses_RF
1214 <  end function FF_UsesDirectionalAtoms
1215 <  
1216 <  function FF_RequiresPrepairCalc() result(doesit)
1217 <    logical :: doesit
1218 <    doesit = FF_uses_EAM
1219 <  end function FF_RequiresPrepairCalc
1220 <  
1221 <  function FF_RequiresPostpairCalc() result(doesit)
1222 <    logical :: doesit
1223 <    doesit = FF_uses_RF
1224 <  end function FF_RequiresPostpairCalc
1225 <  
1134 > function FF_UsesDirectionalAtoms() result(doesit)
1135 >   logical :: doesit
1136 >   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1137 >        FF_uses_GB .or. FF_uses_RF
1138 > end function FF_UsesDirectionalAtoms
1139 >
1140 > function FF_RequiresPrepairCalc() result(doesit)
1141 >   logical :: doesit
1142 >   doesit = FF_uses_EAM
1143 > end function FF_RequiresPrepairCalc
1144 >
1145 > function FF_RequiresPostpairCalc() result(doesit)
1146 >   logical :: doesit
1147 >   doesit = FF_uses_RF
1148 > end function FF_RequiresPostpairCalc
1149 >
1150   #ifdef PROFILE
1151 <  function getforcetime() result(totalforcetime)
1152 <    real(kind=dp) :: totalforcetime
1153 <    totalforcetime = forcetime
1154 <  end function getforcetime
1151 > function getforcetime() result(totalforcetime)
1152 >   real(kind=dp) :: totalforcetime
1153 >   totalforcetime = forcetime
1154 > end function getforcetime
1155   #endif
1156 +
1157 + !! This cleans componets of force arrays belonging only to fortran
1158  
1159 < !! This cleans componets of force arrays belonging only to fortran
1160 <
1159 > subroutine add_stress_tensor(dpair, fpair)
1160 >  
1161 >   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1162 >  
1163 >   ! because the d vector is the rj - ri vector, and
1164 >   ! because fx, fy, fz are the force on atom i, we need a
1165 >   ! negative sign here:  
1166 >  
1167 >   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1168 >   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1169 >   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1170 >   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1171 >   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1172 >   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1173 >   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1174 >   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1175 >   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1176 >  
1177 >   !write(*,'(6es12.3)')  fpair(1:3), tau_Temp(1), tau_Temp(5), tau_temp(9)
1178 >   virial_Temp = virial_Temp + &
1179 >        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1180 >  
1181 > end subroutine add_stress_tensor
1182 >
1183   end module do_Forces
1184 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines