ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/do_Forces.F90
(Generate patch)

Comparing trunk/OOPSE/libmdtools/do_Forces.F90 (file contents):
Revision 480 by chuckv, Tue Apr 8 17:16:22 2003 UTC vs.
Revision 1217 by gezelter, Tue Jun 1 21:45:22 2004 UTC

# Line 4 | Line 4
4  
5   !! @author Charles F. Vardeman II
6   !! @author Matthew Meineke
7 < !! @version $Id: do_Forces.F90,v 1.12 2003-04-08 17:16:22 chuckv Exp $, $Date: 2003-04-08 17:16:22 $, $Name: not supported by cvs2svn $, $Revision: 1.12 $
7 > !! @version $Id: do_Forces.F90,v 1.68 2004-06-01 21:45:22 gezelter Exp $, $Date: 2004-06-01 21:45:22 $, $Name: not supported by cvs2svn $, $Revision: 1.68 $
8  
9   module do_Forces
10    use force_globals
11    use simulation
12    use definitions
13    use atype_module
14 +  use switcheroo
15    use neighborLists  
16    use lj
17    use sticky_pair
18    use dipole_dipole
19 +  use charge_charge
20    use reaction_field
21    use gb_pair
22 +  use vector_class
23 +  use eam
24 +  use status
25   #ifdef IS_MPI
26    use mpiSimulation
27   #endif
# Line 26 | Line 31 | module do_Forces
31  
32   #define __FORTRAN90
33   #include "fForceField.h"
34 + #include "fSwitchingFunction.h"
35  
36 <  logical, save :: do_forces_initialized = .false.
36 >  INTEGER, PARAMETER:: PREPAIR_LOOP = 1
37 >  INTEGER, PARAMETER:: PAIR_LOOP    = 2
38 >
39 >  logical, save :: haveRlist = .false.
40 >  logical, save :: haveNeighborList = .false.
41 >  logical, save :: havePolicies = .false.
42 >  logical, save :: haveSIMvariables = .false.
43 >  logical, save :: havePropertyMap = .false.
44 >  logical, save :: haveSaneForceField = .false.
45    logical, save :: FF_uses_LJ
46    logical, save :: FF_uses_sticky
47 +  logical, save :: FF_uses_charges
48    logical, save :: FF_uses_dipoles
49    logical, save :: FF_uses_RF
50    logical, save :: FF_uses_GB
51    logical, save :: FF_uses_EAM
52 +  logical, save :: SIM_uses_LJ
53 +  logical, save :: SIM_uses_sticky
54 +  logical, save :: SIM_uses_charges
55 +  logical, save :: SIM_uses_dipoles
56 +  logical, save :: SIM_uses_RF
57 +  logical, save :: SIM_uses_GB
58 +  logical, save :: SIM_uses_EAM
59 +  logical, save :: SIM_requires_postpair_calc
60 +  logical, save :: SIM_requires_prepair_calc
61 +  logical, save :: SIM_uses_directional_atoms
62 +  logical, save :: SIM_uses_PBC
63 +  logical, save :: SIM_uses_molecular_cutoffs
64  
65 +  real(kind=dp), save :: rlist, rlistsq
66 +
67    public :: init_FF
68    public :: do_force_loop
69 +  public :: setRlistDF
70  
71 + #ifdef PROFILE
72 +  public :: getforcetime
73 +  real, save :: forceTime = 0
74 +  real :: forceTimeInitial, forceTimeFinal
75 +  integer :: nLoops
76 + #endif
77 +
78 +  type :: Properties
79 +     logical :: is_lj     = .false.
80 +     logical :: is_sticky = .false.
81 +     logical :: is_dp     = .false.
82 +     logical :: is_gb     = .false.
83 +     logical :: is_eam    = .false.
84 +     logical :: is_charge = .false.
85 +     real(kind=DP) :: charge = 0.0_DP
86 +     real(kind=DP) :: dipole_moment = 0.0_DP
87 +  end type Properties
88 +
89 +  type(Properties), dimension(:),allocatable :: PropertyMap
90 +
91   contains
92  
93 +  subroutine setRlistDF( this_rlist )
94 +    
95 +    real(kind=dp) :: this_rlist
96 +
97 +    rlist = this_rlist
98 +    rlistsq = rlist * rlist
99 +    
100 +    haveRlist = .true.
101 +
102 +  end subroutine setRlistDF    
103 +
104 +  subroutine createPropertyMap(status)
105 +    integer :: nAtypes
106 +    integer :: status
107 +    integer :: i
108 +    logical :: thisProperty
109 +    real (kind=DP) :: thisDPproperty
110 +
111 +    status = 0
112 +
113 +    nAtypes = getSize(atypes)
114 +
115 +    if (nAtypes == 0) then
116 +       status = -1
117 +       return
118 +    end if
119 +        
120 +    if (.not. allocated(PropertyMap)) then
121 +       allocate(PropertyMap(nAtypes))
122 +    endif
123 +
124 +    do i = 1, nAtypes
125 +       call getElementProperty(atypes, i, "is_LJ", thisProperty)
126 +       PropertyMap(i)%is_LJ = thisProperty
127 +
128 +       call getElementProperty(atypes, i, "is_Charge", thisProperty)
129 +       PropertyMap(i)%is_Charge = thisProperty
130 +      
131 +       if (thisProperty) then
132 +          call getElementProperty(atypes, i, "charge", thisDPproperty)
133 +          PropertyMap(i)%charge = thisDPproperty
134 +       endif
135 +
136 +       call getElementProperty(atypes, i, "is_DP", thisProperty)
137 +       PropertyMap(i)%is_DP = thisProperty
138 +
139 +       if (thisProperty) then
140 +          call getElementProperty(atypes, i, "dipole_moment", thisDPproperty)
141 +          PropertyMap(i)%dipole_moment = thisDPproperty
142 +       endif
143 +
144 +       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
145 +       PropertyMap(i)%is_Sticky = thisProperty
146 +       call getElementProperty(atypes, i, "is_GB", thisProperty)
147 +       PropertyMap(i)%is_GB = thisProperty
148 +       call getElementProperty(atypes, i, "is_EAM", thisProperty)
149 +       PropertyMap(i)%is_EAM = thisProperty
150 +    end do
151 +
152 +    havePropertyMap = .true.
153 +
154 +  end subroutine createPropertyMap
155 +
156 +  subroutine setSimVariables()
157 +    SIM_uses_LJ = SimUsesLJ()
158 +    SIM_uses_sticky = SimUsesSticky()
159 +    SIM_uses_charges = SimUsesCharges()
160 +    SIM_uses_dipoles = SimUsesDipoles()
161 +    SIM_uses_RF = SimUsesRF()
162 +    SIM_uses_GB = SimUsesGB()
163 +    SIM_uses_EAM = SimUsesEAM()
164 +    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
165 +    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
166 +    SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
167 +    SIM_uses_PBC = SimUsesPBC()
168 +    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
169 +
170 +    haveSIMvariables = .true.
171 +
172 +    return
173 +  end subroutine setSimVariables
174 +
175 +  subroutine doReadyCheck(error)
176 +    integer, intent(out) :: error
177 +
178 +    integer :: myStatus
179 +
180 +    error = 0
181 +    
182 +    if (.not. havePropertyMap) then
183 +
184 +       myStatus = 0
185 +
186 +       call createPropertyMap(myStatus)
187 +
188 +       if (myStatus .ne. 0) then
189 +          write(default_error, *) 'createPropertyMap failed in do_Forces!'
190 +          error = -1
191 +          return
192 +       endif
193 +    endif
194 +
195 +    if (.not. haveSIMvariables) then
196 +       call setSimVariables()
197 +    endif
198 +
199 +    if (.not. haveRlist) then
200 +       write(default_error, *) 'rList has not been set in do_Forces!'
201 +       error = -1
202 +       return
203 +    endif
204 +
205 +    if (SIM_uses_LJ .and. FF_uses_LJ) then
206 +       if (.not. havePolicies) then
207 +          write(default_error, *) 'LJ mixing Policies have not been set in do_Forces!'
208 +          error = -1
209 +          return
210 +       endif
211 +    endif
212 +
213 +    if (.not. haveNeighborList) then
214 +       write(default_error, *) 'neighbor list has not been initialized in do_Forces!'
215 +       error = -1
216 +       return
217 +    end if
218 +
219 +    if (.not. haveSaneForceField) then
220 +       write(default_error, *) 'Force Field is not sane in do_Forces!'
221 +       error = -1
222 +       return
223 +    end if
224 +
225 + #ifdef IS_MPI
226 +    if (.not. isMPISimSet()) then
227 +       write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
228 +       error = -1
229 +       return
230 +    endif
231 + #endif
232 +    return
233 +  end subroutine doReadyCheck
234 +    
235 +
236    subroutine init_FF(LJMIXPOLICY, use_RF_c, thisStat)
237  
238      integer, intent(in) :: LJMIXPOLICY
# Line 64 | Line 257 | contains
257    
258      FF_uses_LJ = .false.
259      FF_uses_sticky = .false.
260 +    FF_uses_charges = .false.
261      FF_uses_dipoles = .false.
262      FF_uses_GB = .false.
263      FF_uses_EAM = .false.
264      
265      call getMatchingElementList(atypes, "is_LJ", .true., nMatches, MatchList)
266      if (nMatches .gt. 0) FF_uses_LJ = .true.
267 <    
267 >
268 >    call getMatchingElementList(atypes, "is_Charge", .true., nMatches, MatchList)
269 >    if (nMatches .gt. 0) FF_uses_charges = .true.  
270 >
271      call getMatchingElementList(atypes, "is_DP", .true., nMatches, MatchList)
272      if (nMatches .gt. 0) FF_uses_dipoles = .true.
273      
# Line 84 | Line 281 | contains
281      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
282      if (nMatches .gt. 0) FF_uses_EAM = .true.
283      
284 +    !! Assume sanity (for the sake of argument)
285 +    haveSaneForceField = .true.
286 +
287      !! check to make sure the FF_uses_RF setting makes sense
288      
289      if (FF_uses_dipoles) then
90       rrf = getRrf()
91       rt = getRt()      
92       call initialize_dipole(rrf, rt)
290         if (FF_uses_RF) then
291            dielect = getDielect()
292 <          call initialize_rf(rrf, rt, dielect)
292 >          call initialize_rf(dielect)
293         endif
294      else
295         if (FF_uses_RF) then          
296            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
297            thisStat = -1
298 +          haveSaneForceField = .false.
299            return
300         endif
301 <    endif
301 >    endif
302  
303      if (FF_uses_LJ) then
304        
107       call getRcut(rcut)
108
305         select case (LJMIXPOLICY)
306         case (LB_MIXING_RULE)
307 <          call init_lj_FF(LB_MIXING_RULE, rcut, my_status)            
307 >          call init_lj_FF(LB_MIXING_RULE, my_status)            
308         case (EXPLICIT_MIXING_RULE)
309 <          call init_lj_FF(EXPLICIT_MIXING_RULE, rcut, my_status)
309 >          call init_lj_FF(EXPLICIT_MIXING_RULE, my_status)
310         case default
311            write(default_error,*) 'unknown LJ Mixing Policy!'
312            thisStat = -1
313 +          haveSaneForceField = .false.
314            return            
315         end select
316         if (my_status /= 0) then
317            thisStat = -1
318 +          haveSaneForceField = .false.
319            return
320         end if
321 +       havePolicies = .true.
322      endif
323  
324      if (FF_uses_sticky) then
325         call check_sticky_FF(my_status)
326         if (my_status /= 0) then
327            thisStat = -1
328 +          haveSaneForceField = .false.
329            return
330         end if
331      endif
332 <    
332 >
333 >
334 >    if (FF_uses_EAM) then
335 >         call init_EAM_FF(my_status)
336 >       if (my_status /= 0) then
337 >          write(default_error, *) "init_EAM_FF returned a bad status"
338 >          thisStat = -1
339 >          haveSaneForceField = .false.
340 >          return
341 >       end if
342 >    endif
343 >
344      if (FF_uses_GB) then
345         call check_gb_pair_FF(my_status)
346         if (my_status .ne. 0) then
347            thisStat = -1
348 +          haveSaneForceField = .false.
349            return
350         endif
351      endif
352  
353      if (FF_uses_GB .and. FF_uses_LJ) then
354      endif
355 <    if (.not. do_forces_initialized) then
355 >    if (.not. haveNeighborList) then
356         !! Create neighbor lists
357 <       call expandNeighborList(getNlocal(), my_status)
357 >       call expandNeighborList(nLocal, my_status)
358         if (my_Status /= 0) then
359            write(default_error,*) "SimSetup: ExpandNeighborList returned error."
360            thisStat = -1
361            return
362         endif
363 +       haveNeighborList = .true.
364      endif
365  
366 <    do_forces_initialized = .true.    
367 <
366 >    
367 >    
368    end subroutine init_FF
369    
370  
371    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
372    !------------------------------------------------------------->
373 <  subroutine do_force_loop(q, A, u_l, f, t, tau, pot, do_pot_c, do_stress_c, &
374 <       error)
373 >  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
374 >       do_pot_c, do_stress_c, error)
375      !! Position array provided by C, dimensioned by getNlocal
376 <    real ( kind = dp ), dimension(3,getNlocal()) :: q
376 >    real ( kind = dp ), dimension(3, nLocal) :: q
377 >    !! molecular center-of-mass position array
378 >    real ( kind = dp ), dimension(3, nGroups) :: q_group
379      !! Rotation Matrix for each long range particle in simulation.
380 <    real( kind = dp), dimension(9,getNlocal()) :: A    
380 >    real( kind = dp), dimension(9, nLocal) :: A    
381      !! Unit vectors for dipoles (lab frame)
382 <    real( kind = dp ), dimension(3,getNlocal()) :: u_l
382 >    real( kind = dp ), dimension(3,nLocal) :: u_l
383      !! Force array provided by C, dimensioned by getNlocal
384 <    real ( kind = dp ), dimension(3,getNlocal()) :: f
384 >    real ( kind = dp ), dimension(3,nLocal) :: f
385      !! Torsion array provided by C, dimensioned by getNlocal
386 <    real( kind = dp ), dimension(3,getNlocal()) :: t    
386 >    real( kind = dp ), dimension(3,nLocal) :: t    
387 >
388      !! Stress Tensor
389      real( kind = dp), dimension(9) :: tau  
390      real ( kind = dp ) :: pot
391      logical ( kind = 2) :: do_pot_c, do_stress_c
392      logical :: do_pot
393      logical :: do_stress
394 +    logical :: in_switching_region
395   #ifdef IS_MPI
396      real( kind = DP ) :: pot_local
397 <    integer :: nrow
398 <    integer :: ncol
397 >    integer :: nAtomsInRow
398 >    integer :: nAtomsInCol
399 >    integer :: nprocs
400 >    integer :: nGroupsInRow
401 >    integer :: nGroupsInCol
402   #endif
183    integer :: nlocal
403      integer :: natoms    
404      logical :: update_nlist  
405 <    integer :: i, j, jbeg, jend, jnab
405 >    integer :: i, j, jstart, jend, jnab
406 >    integer :: istart, iend
407 >    integer :: ia, jb, atom1, atom2
408      integer :: nlist
409 <    real( kind = DP ) ::  rijsq, rlistsq, rcutsq, rlist, rcut
410 <    real(kind=dp),dimension(3) :: d
409 >    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
410 >    real( kind = DP ) :: sw, dswdr, swderiv, mf
411 >    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
412      real(kind=dp) :: rfpot, mu_i, virial
413 <    integer :: me_i
413 >    integer :: me_i, me_j, n_in_i, n_in_j
414      logical :: is_dp_i
415      integer :: neighborListSize
416      integer :: listerror, error
417      integer :: localError
418 +    integer :: propPack_i, propPack_j
419 +    integer :: loopStart, loopEnd, loop
420  
421 +    real(kind=dp) :: listSkin = 1.0  
422 +    
423      !! initialize local variables  
424 <
424 >    
425   #ifdef IS_MPI
426      pot_local = 0.0_dp
427 <    nlocal = getNlocal()
428 <    nrow   = getNrow(plan_row)
429 <    ncol   = getNcol(plan_col)
427 >    nAtomsInRow   = getNatomsInRow(plan_atom_row)
428 >    nAtomsInCol   = getNatomsInCol(plan_atom_col)
429 >    nGroupsInRow  = getNgroupsInRow(plan_group_row)
430 >    nGroupsInCol  = getNgroupsInCol(plan_group_col)
431   #else
205    nlocal = getNlocal()
432      natoms = nlocal
433   #endif
208  
209    call getRcut(rcut,rc2=rcutsq)
210    call getRlist(rlist,rlistsq)
434      
435 <    call check_initialization(localError)
435 >    call doReadyCheck(localError)
436      if ( localError .ne. 0 ) then
437 +       call handleError("do_force_loop", "Not Initialized")
438         error = -1
439         return
440      end if
441      call zero_work_arrays()
442 <
442 >        
443      do_pot = do_pot_c
444      do_stress = do_stress_c
445      
222
446      ! Gather all information needed by all force loops:
447      
448   #ifdef IS_MPI    
449 +    
450 +    call gather(q, q_Row, plan_atom_row_3d)
451 +    call gather(q, q_Col, plan_atom_col_3d)
452  
453 <    call gather(q,q_Row,plan_row3d)
454 <    call gather(q,q_Col,plan_col3d)
453 >    call gather(q_group, q_group_Row, plan_group_row_3d)
454 >    call gather(q_group, q_group_Col, plan_group_col_3d)
455          
456 <    if (FF_UsesDirectionalAtoms() .and. SimUsesDirectionalAtoms()) then
457 <       call gather(u_l,u_l_Row,plan_row3d)
458 <       call gather(u_l,u_l_Col,plan_col3d)
456 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
457 >       call gather(u_l, u_l_Row, plan_atom_row_3d)
458 >       call gather(u_l, u_l_Col, plan_atom_col_3d)
459        
460 <       call gather(A,A_Row,plan_row_rotation)
461 <       call gather(A,A_Col,plan_col_rotation)
460 >       call gather(A, A_Row, plan_atom_row_rotation)
461 >       call gather(A, A_Col, plan_atom_col_rotation)
462      endif
463      
464   #endif
465      
466 <    if (FF_RequiresPrepairCalc() .and. SimRequiresPrepairCalc()) then
467 <       !! See if we need to update neighbor lists
468 <       call checkNeighborList(nlocal, q, rcut, rlist, update_nlist)  
469 <       !! if_mpi_gather_stuff_for_prepair
470 <       !! do_prepair_loop_if_needed
471 <       !! if_mpi_scatter_stuff_from_prepair
472 <       !! if_mpi_gather_stuff_from_prepair_to_main_loop
466 >    !! Begin force loop timing:
467 > #ifdef PROFILE
468 >    call cpu_time(forceTimeInitial)
469 >    nloops = nloops + 1
470 > #endif
471 >    
472 >    loopEnd = PAIR_LOOP
473 >    if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
474 >       loopStart = PREPAIR_LOOP
475      else
476 <       !! See if we need to update neighbor lists
249 <       call checkNeighborList(nlocal, q, rcut, rlist, update_nlist)  
476 >       loopStart = PAIR_LOOP
477      endif
478 <    
478 >
479 >    do loop = loopStart, loopEnd
480 >
481 >       ! See if we need to update neighbor lists
482 >       ! (but only on the first time through):
483 >       if (loop .eq. loopStart) then
484   #ifdef IS_MPI
485 <    
486 <    if (update_nlist) then
485 >          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
486 >             update_nlist)
487 > #else
488 >          call checkNeighborList(nGroups, q_group, listSkin, &
489 >             update_nlist)
490 > #endif
491 >       endif
492        
493 <       !! save current configuration, construct neighbor list,
494 <       !! and calculate forces
495 <       call saveNeighborList(nlocal, q)
493 >       if (update_nlist) then
494 >          !! save current configuration and construct neighbor list
495 > #ifdef IS_MPI
496 >          call saveNeighborList(nGroupsInRow, q_group_row)
497 > #else
498 >          call saveNeighborList(nGroups, q_group)
499 > #endif        
500 >          neighborListSize = size(list)
501 >          nlist = 0
502 >       endif
503        
504 <       neighborListSize = size(list)
505 <       nlist = 0      
506 <      
507 <       do i = 1, nrow
508 <          point(i) = nlist + 1
504 >       istart = 1
505 > #ifdef IS_MPI
506 >       iend = nGroupsInRow
507 > #else
508 >       iend = nGroups - 1
509 > #endif
510 >       outer: do i = istart, iend
511 >
512 >          if (update_nlist) point(i) = nlist + 1
513            
514 <          inner: do j = 1, ncol
515 <            
516 <             if (skipThisPair(i,j)) cycle inner
517 <            
518 <             call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
519 <            
520 <             if (rijsq <  rlistsq) then            
521 <                
522 <                nlist = nlist + 1
523 <                
524 <                if (nlist > neighborListSize) then
525 <                   call expandNeighborList(nlocal, listerror)
526 <                   if (listerror /= 0) then
527 <                      error = -1
528 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
529 <                      return
530 <                   end if
531 <                   neighborListSize = size(list)
532 <                endif
533 <                
534 <                list(nlist) = j
535 <                                
288 <                if (rijsq <  rcutsq) then
289 <                   call do_pair(i, j, rijsq, d, do_pot, do_stress, &
290 <                        u_l, A, f, t, pot_local)
291 <                endif
514 >          n_in_i = groupStartRow(i+1) - groupStartRow(i)
515 >          
516 >          if (update_nlist) then
517 > #ifdef IS_MPI
518 >             jstart = 1
519 >             jend = nGroupsInCol
520 > #else
521 >             jstart = i+1
522 >             jend = nGroups
523 > #endif
524 >          else            
525 >             jstart = point(i)
526 >             jend = point(i+1) - 1
527 >             ! make sure group i has neighbors
528 >             if (jstart .gt. jend) cycle outer
529 >          endif
530 >          
531 >          do jnab = jstart, jend
532 >             if (update_nlist) then
533 >                j = jnab
534 >             else
535 >                j = list(jnab)
536               endif
293          enddo inner
294       enddo
537  
538 <       point(nrow + 1) = nlist + 1
539 <      
540 <    else  !! (of update_check)
299 <
300 <       ! use the list to find the neighbors
301 <       do i = 1, nrow
302 <          JBEG = POINT(i)
303 <          JEND = POINT(i+1) - 1
304 <          ! check thiat molecule i has neighbors
305 <          if (jbeg .le. jend) then
306 <            
307 <             do jnab = jbeg, jend
308 <                j = list(jnab)
309 <
310 <                call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
311 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
312 <                     u_l, A, f, t, pot_local)
313 <
314 <             enddo
315 <          endif
316 <       enddo
317 <    endif
318 <    
538 > #ifdef IS_MPI
539 >             call get_interatomic_vector(q_group_Row(:,i), &
540 >                  q_group_Col(:,j), d_grp, rgrpsq)
541   #else
542 <    
543 <    if (update_nlist) then
544 <      
323 <       ! save current configuration, contruct neighbor list,
324 <       ! and calculate forces
325 <       call saveNeighborList(natoms, q)
326 <      
327 <       neighborListSize = size(list)
328 <  
329 <       nlist = 0
330 <      
331 <       do i = 1, natoms-1
332 <          point(i) = nlist + 1
333 <          
334 <          inner: do j = i+1, natoms
335 <            
336 <             if (skipThisPair(i,j))  cycle inner
337 <                          
338 <             call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
339 <          
542 >             call get_interatomic_vector(q_group(:,i), &
543 >                  q_group(:,j), d_grp, rgrpsq)
544 > #endif
545  
546 <             if (rijsq <  rlistsq) then
546 >             if (rgrpsq < rlistsq) then
547 >                if (update_nlist) then
548 >                   nlist = nlist + 1
549 >                  
550 >                   if (nlist > neighborListSize) then
551 > #ifdef IS_MPI                
552 >                      call expandNeighborList(nGroupsInRow, listerror)
553 > #else
554 >                      call expandNeighborList(nGroups, listerror)
555 > #endif
556 >                      if (listerror /= 0) then
557 >                         error = -1
558 >                         write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
559 >                         return
560 >                      end if
561 >                      neighborListSize = size(list)
562 >                   endif
563 >                  
564 >                   list(nlist) = j
565 >                endif
566                  
567 <                nlist = nlist + 1
568 <              
569 <                if (nlist > neighborListSize) then
346 <                   call expandNeighborList(natoms, listerror)
347 <                   if (listerror /= 0) then
348 <                      error = -1
349 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
350 <                      return
351 <                   end if
352 <                   neighborListSize = size(list)
567 >                if (loop .eq. PAIR_LOOP) then
568 >                   vij = 0.0d0
569 >                   fij(1:3) = 0.0d0
570                  endif
571                  
572 <                list(nlist) = j
572 >                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
573 >                     in_switching_region)
574                  
575 <                if (rijsq <  rcutsq) then
576 <                   call do_pair(i, j, rijsq, d, do_pot, do_stress, &
577 <                        u_l, A, f, t, pot)
578 <                endif
579 <             endif
580 <          enddo inner
581 <       enddo
582 <      
583 <       point(natoms) = nlist + 1
584 <      
585 <    else !! (update)
368 <      
369 <       ! use the list to find the neighbors
370 <       do i = 1, natoms-1
371 <          JBEG = POINT(i)
372 <          JEND = POINT(i+1) - 1
373 <          ! check thiat molecule i has neighbors
374 <          if (jbeg .le. jend) then
375 <            
376 <             do jnab = jbeg, jend
377 <                j = list(jnab)
575 >                n_in_j = groupStartCol(j+1) - groupStartCol(j)
576 >                
577 >                do ia = groupStartRow(i), groupStartRow(i+1)-1
578 >                  
579 >                   atom1 = groupListRow(ia)
580 >                  
581 >                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
582 >                      
583 >                      atom2 = groupListCol(jb)
584 >                      
585 >                      if (skipThisPair(atom1, atom2)) cycle inner
586  
587 <                call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
588 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
589 <                     u_l, A, f, t, pot)
587 >                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
588 >                         d_atm(1:3) = d_grp(1:3)
589 >                         ratmsq = rgrpsq
590 >                      else
591 > #ifdef IS_MPI
592 >                         call get_interatomic_vector(q_Row(:,atom1), &
593 >                              q_Col(:,atom2), d_atm, ratmsq)
594 > #else
595 >                         call get_interatomic_vector(q(:,atom1), &
596 >                              q(:,atom2), d_atm, ratmsq)
597 > #endif
598 >                      endif
599  
600 <             enddo
600 >                      if (loop .eq. PREPAIR_LOOP) then
601 > #ifdef IS_MPI                      
602 >                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
603 >                              rgrpsq, d_grp, do_pot, do_stress, &
604 >                              u_l, A, f, t, pot_local)
605 > #else
606 >                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
607 >                              rgrpsq, d_grp, do_pot, do_stress, &
608 >                              u_l, A, f, t, pot)
609 > #endif                                              
610 >                      else
611 > #ifdef IS_MPI                      
612 >                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
613 >                              do_pot, &
614 >                              u_l, A, f, t, pot_local, vpair, fpair)
615 > #else
616 >                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
617 >                              do_pot,  &
618 >                              u_l, A, f, t, pot, vpair, fpair)
619 > #endif
620 >
621 >                         vij = vij + vpair
622 >                         fij(1:3) = fij(1:3) + fpair(1:3)
623 >                      endif
624 >                   enddo inner
625 >                enddo
626 >                
627 >                if (loop .eq. PAIR_LOOP) then
628 >                   if (in_switching_region) then
629 >                      swderiv = vij*dswdr/rgrp
630 >                      fij(1) = fij(1) + swderiv*d_grp(1)
631 >                      fij(2) = fij(2) + swderiv*d_grp(2)
632 >                      fij(3) = fij(3) + swderiv*d_grp(3)
633 >                      
634 >                      do ia=groupStartRow(i), groupStartRow(i+1)-1
635 >                         atom1=groupListRow(ia)
636 >                         mf = mfactRow(atom1)
637 > #ifdef IS_MPI
638 >                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
639 >                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
640 >                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
641 > #else
642 >                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
643 >                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
644 >                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
645 > #endif
646 >                      enddo
647 >                      
648 >                      do jb=groupStartCol(j), groupStartCol(j+1)-1
649 >                         atom2=groupListCol(jb)
650 >                         mf = mfactCol(atom2)
651 > #ifdef IS_MPI
652 >                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
653 >                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
654 >                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
655 > #else
656 >                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
657 >                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
658 >                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
659 > #endif
660 >                      enddo
661 >                   endif
662 >                  
663 >                   if (do_stress) call add_stress_tensor(d_grp, fij)
664 >                endif
665 >             end if
666 >          enddo
667 >       enddo outer
668 >      
669 >       if (update_nlist) then
670 > #ifdef IS_MPI
671 >          point(nGroupsInRow + 1) = nlist + 1
672 > #else
673 >          point(nGroups) = nlist + 1
674 > #endif
675 >          if (loop .eq. PREPAIR_LOOP) then
676 >             ! we just did the neighbor list update on the first
677 >             ! pass, so we don't need to do it
678 >             ! again on the second pass
679 >             update_nlist = .false.                              
680            endif
681 <       enddo
682 <    endif
681 >       endif
682 >            
683 >       if (loop .eq. PREPAIR_LOOP) then
684 >          call do_preforce(nlocal, pot)
685 >       endif
686 >      
687 >    enddo
688      
689 < #endif
689 >    !! Do timing
690 > #ifdef PROFILE
691 >    call cpu_time(forceTimeFinal)
692 >    forceTime = forceTime + forceTimeFinal - forceTimeInitial
693 > #endif    
694      
390    ! phew, done with main loop.
391    
695   #ifdef IS_MPI
696      !!distribute forces
697 <  
697 >    
698      f_temp = 0.0_dp
699 <    call scatter(f_Row,f_temp,plan_row3d)
699 >    call scatter(f_Row,f_temp,plan_atom_row_3d)
700      do i = 1,nlocal
701         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
702      end do
703 <
703 >    
704      f_temp = 0.0_dp
705 <    call scatter(f_Col,f_temp,plan_col3d)
705 >    call scatter(f_Col,f_temp,plan_atom_col_3d)
706      do i = 1,nlocal
707         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
708      end do
709      
710 <    if (FF_UsesDirectionalAtoms() .and. SimUsesDirectionalAtoms()) then
710 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
711         t_temp = 0.0_dp
712 <       call scatter(t_Row,t_temp,plan_row3d)
712 >       call scatter(t_Row,t_temp,plan_atom_row_3d)
713         do i = 1,nlocal
714            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
715         end do
716         t_temp = 0.0_dp
717 <       call scatter(t_Col,t_temp,plan_col3d)
717 >       call scatter(t_Col,t_temp,plan_atom_col_3d)
718        
719         do i = 1,nlocal
720            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
# Line 420 | Line 723 | contains
723      
724      if (do_pot) then
725         ! scatter/gather pot_row into the members of my column
726 <       call scatter(pot_Row, pot_Temp, plan_row)
727 <
726 >       call scatter(pot_Row, pot_Temp, plan_atom_row)
727 >      
728         ! scatter/gather pot_local into all other procs
729         ! add resultant to get total pot
730         do i = 1, nlocal
# Line 429 | Line 732 | contains
732         enddo
733        
734         pot_Temp = 0.0_DP
735 <
736 <       call scatter(pot_Col, pot_Temp, plan_col)
735 >      
736 >       call scatter(pot_Col, pot_Temp, plan_atom_col)
737         do i = 1, nlocal
738            pot_local = pot_local + pot_Temp(i)
739         enddo
740 <
741 <    endif    
740 >      
741 >    endif
742   #endif
743 <
744 <    if (FF_RequiresPostpairCalc() .and. SimRequiresPostpairCalc()) then
743 >    
744 >    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
745        
746 <       if (FF_uses_RF .and. SimUsesRF()) then
746 >       if (FF_uses_RF .and. SIM_uses_RF) then
747            
748   #ifdef IS_MPI
749 <          call scatter(rf_Row,rf,plan_row3d)
750 <          call scatter(rf_Col,rf_Temp,plan_col3d)
749 >          call scatter(rf_Row,rf,plan_atom_row_3d)
750 >          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
751            do i = 1,nlocal
752               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
753            end do
754   #endif
755            
756 <          do i = 1, getNlocal()
757 <
756 >          do i = 1, nLocal
757 >            
758               rfpot = 0.0_DP
759   #ifdef IS_MPI
760               me_i = atid_row(i)
761   #else
762               me_i = atid(i)
763   #endif
764 <             call getElementProperty(atypes, me_i, "is_DP", is_DP_i)      
765 <             if ( is_DP_i ) then
766 <                call getElementProperty(atypes, me_i, "dipole_moment", mu_i)
764 >            
765 >             if (PropertyMap(me_i)%is_DP) then
766 >                
767 >                mu_i = PropertyMap(me_i)%dipole_moment
768 >                
769                  !! The reaction field needs to include a self contribution
770                  !! to the field:
771 <                call accumulate_self_rf(i, mu_i, u_l)            
771 >                call accumulate_self_rf(i, mu_i, u_l)
772                  !! Get the reaction field contribution to the
773                  !! potential and torques:
774                  call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
# Line 477 | Line 782 | contains
782            enddo
783         endif
784      endif
785 <
786 <
785 >    
786 >    
787   #ifdef IS_MPI
788 <
788 >    
789      if (do_pot) then
790         pot = pot + pot_local
791         !! we assume the c code will do the allreduce to get the total potential
792         !! we could do it right here if we needed to...
793      endif
794 <
794 >    
795      if (do_stress) then
796 <       call mpi_allreduce(tau_Temp, tau,9,mpi_double_precision,mpi_sum, &
796 >       call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
797              mpi_comm_world,mpi_err)
798         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
799              mpi_comm_world,mpi_err)
800      endif
801 <
801 >    
802   #else
803 <
803 >    
804      if (do_stress) then
805         tau = tau_Temp
806         virial = virial_Temp
807      endif
503
504 #endif
808      
809 + #endif
810 +      
811    end subroutine do_force_loop
812 +  
813 +  subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
814 +       u_l, A, f, t, pot, vpair, fpair)
815  
816 <  subroutine do_pair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot)
816 >    real( kind = dp ) :: pot, vpair, sw
817 >    real( kind = dp ), dimension(3) :: fpair
818 >    real( kind = dp ), dimension(nLocal)   :: mfact
819 >    real( kind = dp ), dimension(3,nLocal) :: u_l
820 >    real( kind = dp ), dimension(9,nLocal) :: A
821 >    real( kind = dp ), dimension(3,nLocal) :: f
822 >    real( kind = dp ), dimension(3,nLocal) :: t
823  
824 <    real( kind = dp ) :: pot
511 <    real( kind = dp ), dimension(3,getNlocal()) :: u_l
512 <    real (kind=dp), dimension(9,getNlocal()) :: A
513 <    real (kind=dp), dimension(3,getNlocal()) :: f
514 <    real (kind=dp), dimension(3,getNlocal()) :: t
515 <
516 <    logical, intent(inout) :: do_pot, do_stress
824 >    logical, intent(inout) :: do_pot
825      integer, intent(in) :: i, j
826 <    real ( kind = dp ), intent(inout)    :: rijsq
826 >    real ( kind = dp ), intent(inout) :: rijsq
827      real ( kind = dp )                :: r
828      real ( kind = dp ), intent(inout) :: d(3)
521    logical :: is_LJ_i, is_LJ_j
522    logical :: is_DP_i, is_DP_j
523    logical :: is_GB_i, is_GB_j
524    logical :: is_Sticky_i, is_Sticky_j
829      integer :: me_i, me_j
830  
831      r = sqrt(rijsq)
832 +    vpair = 0.0d0
833 +    fpair(1:3) = 0.0d0
834  
835   #ifdef IS_MPI
530
836      me_i = atid_row(i)
837      me_j = atid_col(j)
533
838   #else
535
839      me_i = atid(i)
840      me_j = atid(j)
538
841   #endif
842 <
843 <    if (FF_uses_LJ .and. SimUsesLJ()) then
844 <       call getElementProperty(atypes, me_i, "is_LJ", is_LJ_i)
845 <       call getElementProperty(atypes, me_j, "is_LJ", is_LJ_j)
846 <
847 <       if ( is_LJ_i .and. is_LJ_j ) &
848 <            call do_lj_pair(i, j, d, r, rijsq, pot, f, do_pot, do_stress)
842 >    
843 >    if (FF_uses_LJ .and. SIM_uses_LJ) then
844 >      
845 >       if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
846 >          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
847 >       endif
848 >      
849      endif
850 <
851 <    if (FF_uses_dipoles .and. SimUsesDipoles()) then
550 <       call getElementProperty(atypes, me_i, "is_DP", is_DP_i)
551 <       call getElementProperty(atypes, me_j, "is_DP", is_DP_j)
850 >    
851 >    if (FF_uses_charges .and. SIM_uses_charges) then
852        
853 <       if ( is_DP_i .and. is_DP_j ) then
854 <          
555 <          call do_dipole_pair(i, j, d, r, rijsq, pot, u_l, f, t, &
556 <               do_pot, do_stress)
557 <          if (FF_uses_RF .and. SimUsesRF()) then
558 <             call accumulate_rf(i, j, r, u_l)
559 <             call rf_correct_forces(i, j, d, r, u_l, f, do_stress)
560 <          endif
561 <          
853 >       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
854 >          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
855         endif
856 +      
857      endif
858 +    
859 +    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
860 +      
861 +       if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
862 +          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
863 +               do_pot)
864 +          if (FF_uses_RF .and. SIM_uses_RF) then
865 +             call accumulate_rf(i, j, r, u_l, sw)
866 +             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
867 +          endif          
868 +       endif
869  
870 <    if (FF_uses_Sticky .and. SimUsesSticky()) then
870 >    endif
871  
872 <       call getElementProperty(atypes, me_i, "is_Sticky", is_Sticky_i)
568 <       call getElementProperty(atypes, me_j, "is_Sticky", is_Sticky_j)
872 >    if (FF_uses_Sticky .and. SIM_uses_sticky) then
873  
874 <       if ( is_Sticky_i .and. is_Sticky_j ) then
875 <          call do_sticky_pair(i, j, d, r, rijsq, A, pot, f, t, &
876 <               do_pot, do_stress)
874 >       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
875 >          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
876 >               do_pot)
877         endif
878 +
879      endif
880  
881  
882 <    if (FF_uses_GB .and. SimUsesGB()) then
882 >    if (FF_uses_GB .and. SIM_uses_GB) then
883 >      
884 >       if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
885 >          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
886 >               do_pot)
887 >       endif
888  
889 <       call getElementProperty(atypes, me_i, "is_GB", is_GB_i)
580 <       call getElementProperty(atypes, me_j, "is_GB", is_GB_j)
889 >    endif
890        
891 <       if ( is_GB_i .and. is_GB_j ) then
892 <          call do_gb_pair(i, j, d, r, rijsq, u_l, pot, f, t, &
893 <               do_pot, do_stress)          
891 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
892 >      
893 >       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
894 >          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
895 >               do_pot)
896         endif
897 +      
898      endif
899 <    
899 >    
900    end subroutine do_pair
901  
902 +  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
903 +       do_pot, do_stress, u_l, A, f, t, pot)
904  
905 <  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
906 <    
907 <    real (kind = dp), dimension(3) :: q_i
908 <    real (kind = dp), dimension(3) :: q_j
909 <    real ( kind = dp ), intent(out) :: r_sq
910 <    real( kind = dp ) :: d(3)
911 <    real( kind = dp ) :: d_old(3)
912 <    d(1:3) = q_i(1:3) - q_j(1:3)
913 <    d_old = d
914 <    ! Wrap back into periodic box if necessary
915 <    if ( SimUsesPBC() ) then
916 <      
917 <       d(1:3) = d(1:3) - box(1:3) * sign(1.0_dp,d(1:3)) * &
918 <            int(abs(d(1:3)/box(1:3)) + 0.5_dp)
919 <      
920 <    endif
607 <    r_sq = dot_product(d,d)
608 <        
609 <  end subroutine get_interatomic_vector
905 >   real( kind = dp ) :: pot, sw
906 >   real( kind = dp ), dimension(3,nLocal) :: u_l
907 >   real (kind=dp), dimension(9,nLocal) :: A
908 >   real (kind=dp), dimension(3,nLocal) :: f
909 >   real (kind=dp), dimension(3,nLocal) :: t
910 >  
911 >   logical, intent(inout) :: do_pot, do_stress
912 >   integer, intent(in) :: i, j
913 >   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
914 >   real ( kind = dp )                :: r, rc
915 >   real ( kind = dp ), intent(inout) :: d(3), dc(3)
916 >  
917 >   logical :: is_EAM_i, is_EAM_j
918 >  
919 >   integer :: me_i, me_j
920 >  
921  
922 <  subroutine check_initialization(error)
923 <    integer, intent(out) :: error
924 <    
925 <    error = 0
926 <    ! Make sure we are properly initialized.
616 <    if (.not. do_forces_initialized) then
617 <       error = -1
618 <       return
922 >    r = sqrt(rijsq)
923 >    if (SIM_uses_molecular_cutoffs) then
924 >       rc = sqrt(rcijsq)
925 >    else
926 >       rc = r
927      endif
928 +  
929  
930 < #ifdef IS_MPI
931 <    if (.not. isMPISimSet()) then
932 <       write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
933 <       error = -1
934 <       return
935 <    endif
627 < #endif
628 <    
629 <    return
630 <  end subroutine check_initialization
631 <
632 <  
633 <  subroutine zero_work_arrays()
634 <    
635 < #ifdef IS_MPI
636 <
637 <    q_Row = 0.0_dp
638 <    q_Col = 0.0_dp  
639 <    
640 <    u_l_Row = 0.0_dp
641 <    u_l_Col = 0.0_dp
642 <    
643 <    A_Row = 0.0_dp
644 <    A_Col = 0.0_dp
645 <    
646 <    f_Row = 0.0_dp
647 <    f_Col = 0.0_dp
648 <    f_Temp = 0.0_dp
649 <      
650 <    t_Row = 0.0_dp
651 <    t_Col = 0.0_dp
652 <    t_Temp = 0.0_dp
653 <
654 <    pot_Row = 0.0_dp
655 <    pot_Col = 0.0_dp
656 <    pot_Temp = 0.0_dp
657 <
658 <    rf_Row = 0.0_dp
659 <    rf_Col = 0.0_dp
660 <    rf_Temp = 0.0_dp
661 <
662 < #endif
663 <
664 <    rf = 0.0_dp
665 <    tau_Temp = 0.0_dp
666 <    virial_Temp = 0.0_dp
667 <  end subroutine zero_work_arrays
668 <  
669 <  function skipThisPair(atom1, atom2) result(skip_it)
670 <    integer, intent(in) :: atom1
671 <    integer, intent(in), optional :: atom2
672 <    logical :: skip_it
673 <    integer :: unique_id_1, unique_id_2
674 <    integer :: me_i,me_j
675 <    integer :: i
676 <
677 <    skip_it = .false.
678 <    
679 <    !! there are a number of reasons to skip a pair or a particle
680 <    !! mostly we do this to exclude atoms who are involved in short
681 <    !! range interactions (bonds, bends, torsions), but we also need
682 <    !! to exclude some overcounted interactions that result from
683 <    !! the parallel decomposition
684 <    
685 < #ifdef IS_MPI
686 <    !! in MPI, we have to look up the unique IDs for each atom
687 <    unique_id_1 = tagRow(atom1)
688 < #else
689 <    !! in the normal loop, the atom numbers are unique
690 <    unique_id_1 = atom1
691 < #endif
692 <
693 <    !! We were called with only one atom, so just check the global exclude
694 <    !! list for this atom
695 <    if (.not. present(atom2)) then
696 <       do i = 1, nExcludes_global
697 <          if (excludesGlobal(i) == unique_id_1) then
698 <             skip_it = .true.
699 <             return
700 <          end if
701 <       end do
702 <       return
703 <    end if
704 <    
705 < #ifdef IS_MPI
706 <    unique_id_2 = tagColumn(atom2)
707 < #else
708 <    unique_id_2 = atom2
930 > #ifdef IS_MPI  
931 >   me_i = atid_row(i)
932 >   me_j = atid_col(j)  
933 > #else  
934 >   me_i = atid(i)
935 >   me_j = atid(j)  
936   #endif
937 +  
938 +   if (FF_uses_EAM .and. SIM_uses_EAM) then
939 +      
940 +      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
941 +           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
942 +      
943 +   endif
944 +  
945 + end subroutine do_prepair
946 +
947 +
948 + subroutine do_preforce(nlocal,pot)
949 +   integer :: nlocal
950 +   real( kind = dp ) :: pot
951 +  
952 +   if (FF_uses_EAM .and. SIM_uses_EAM) then
953 +      call calc_EAM_preforce_Frho(nlocal,pot)
954 +   endif
955 +  
956 +  
957 + end subroutine do_preforce
958 +
959 +
960 + subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
961 +  
962 +   real (kind = dp), dimension(3) :: q_i
963 +   real (kind = dp), dimension(3) :: q_j
964 +   real ( kind = dp ), intent(out) :: r_sq
965 +   real( kind = dp ) :: d(3), scaled(3)
966 +   integer i
967 +  
968 +   d(1:3) = q_j(1:3) - q_i(1:3)
969 +  
970 +   ! Wrap back into periodic box if necessary
971 +   if ( SIM_uses_PBC ) then
972 +      
973 +      if( .not.boxIsOrthorhombic ) then
974 +         ! calc the scaled coordinates.
975 +        
976 +         scaled = matmul(HmatInv, d)
977 +        
978 +         ! wrap the scaled coordinates
979 +        
980 +         scaled = scaled  - anint(scaled)
981 +        
982 +        
983 +         ! calc the wrapped real coordinates from the wrapped scaled
984 +         ! coordinates
985 +        
986 +         d = matmul(Hmat,scaled)
987 +        
988 +      else
989 +         ! calc the scaled coordinates.
990 +        
991 +         do i = 1, 3
992 +            scaled(i) = d(i) * HmatInv(i,i)
993 +            
994 +            ! wrap the scaled coordinates
995 +            
996 +            scaled(i) = scaled(i) - anint(scaled(i))
997 +            
998 +            ! calc the wrapped real coordinates from the wrapped scaled
999 +            ! coordinates
1000 +            
1001 +            d(i) = scaled(i)*Hmat(i,i)
1002 +         enddo
1003 +      endif
1004 +      
1005 +   endif
1006 +  
1007 +   r_sq = dot_product(d,d)
1008 +  
1009 + end subroutine get_interatomic_vector
1010 +
1011 + subroutine zero_work_arrays()
1012 +  
1013 + #ifdef IS_MPI
1014 +  
1015 +   q_Row = 0.0_dp
1016 +   q_Col = 0.0_dp
1017  
1018 +   q_group_Row = 0.0_dp
1019 +   q_group_Col = 0.0_dp  
1020 +  
1021 +   u_l_Row = 0.0_dp
1022 +   u_l_Col = 0.0_dp
1023 +  
1024 +   A_Row = 0.0_dp
1025 +   A_Col = 0.0_dp
1026 +  
1027 +   f_Row = 0.0_dp
1028 +   f_Col = 0.0_dp
1029 +   f_Temp = 0.0_dp
1030 +  
1031 +   t_Row = 0.0_dp
1032 +   t_Col = 0.0_dp
1033 +   t_Temp = 0.0_dp
1034 +  
1035 +   pot_Row = 0.0_dp
1036 +   pot_Col = 0.0_dp
1037 +   pot_Temp = 0.0_dp
1038 +  
1039 +   rf_Row = 0.0_dp
1040 +   rf_Col = 0.0_dp
1041 +   rf_Temp = 0.0_dp
1042 +  
1043 + #endif
1044 +
1045 +   if (FF_uses_EAM .and. SIM_uses_EAM) then
1046 +      call clean_EAM()
1047 +   endif
1048 +  
1049 +   rf = 0.0_dp
1050 +   tau_Temp = 0.0_dp
1051 +   virial_Temp = 0.0_dp
1052 + end subroutine zero_work_arrays
1053 +
1054 + function skipThisPair(atom1, atom2) result(skip_it)
1055 +   integer, intent(in) :: atom1
1056 +   integer, intent(in), optional :: atom2
1057 +   logical :: skip_it
1058 +   integer :: unique_id_1, unique_id_2
1059 +   integer :: me_i,me_j
1060 +   integer :: i
1061 +  
1062 +   skip_it = .false.
1063 +  
1064 +   !! there are a number of reasons to skip a pair or a particle
1065 +   !! mostly we do this to exclude atoms who are involved in short
1066 +   !! range interactions (bonds, bends, torsions), but we also need
1067 +   !! to exclude some overcounted interactions that result from
1068 +   !! the parallel decomposition
1069 +  
1070   #ifdef IS_MPI
1071 <    !! this situation should only arise in MPI simulations
1072 <    if (unique_id_1 == unique_id_2) then
1073 <       skip_it = .true.
1074 <       return
1075 <    end if
717 <    
718 <    !! this prevents us from doing the pair on multiple processors
719 <    if (unique_id_1 < unique_id_2) then
720 <       if (mod(unique_id_1 + unique_id_2,2) == 0) then
721 <          skip_it = .true.
722 <          return
723 <       endif
724 <    else                
725 <       if (mod(unique_id_1 + unique_id_2,2) == 1) then
726 <          skip_it = .true.
727 <          return
728 <       endif
729 <    endif
1071 >   !! in MPI, we have to look up the unique IDs for each atom
1072 >   unique_id_1 = AtomRowToGlobal(atom1)
1073 > #else
1074 >   !! in the normal loop, the atom numbers are unique
1075 >   unique_id_1 = atom1
1076   #endif
1077 +  
1078 +   !! We were called with only one atom, so just check the global exclude
1079 +   !! list for this atom
1080 +   if (.not. present(atom2)) then
1081 +      do i = 1, nExcludes_global
1082 +         if (excludesGlobal(i) == unique_id_1) then
1083 +            skip_it = .true.
1084 +            return
1085 +         end if
1086 +      end do
1087 +      return
1088 +   end if
1089 +  
1090 + #ifdef IS_MPI
1091 +   unique_id_2 = AtomColToGlobal(atom2)
1092 + #else
1093 +   unique_id_2 = atom2
1094 + #endif
1095 +  
1096 + #ifdef IS_MPI
1097 +   !! this situation should only arise in MPI simulations
1098 +   if (unique_id_1 == unique_id_2) then
1099 +      skip_it = .true.
1100 +      return
1101 +   end if
1102 +  
1103 +   !! this prevents us from doing the pair on multiple processors
1104 +   if (unique_id_1 < unique_id_2) then
1105 +      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1106 +         skip_it = .true.
1107 +         return
1108 +      endif
1109 +   else                
1110 +      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1111 +         skip_it = .true.
1112 +         return
1113 +      endif
1114 +   endif
1115 + #endif
1116 +  
1117 +   !! the rest of these situations can happen in all simulations:
1118 +   do i = 1, nExcludes_global      
1119 +      if ((excludesGlobal(i) == unique_id_1) .or. &
1120 +           (excludesGlobal(i) == unique_id_2)) then
1121 +         skip_it = .true.
1122 +         return
1123 +      endif
1124 +   enddo
1125 +  
1126 +   do i = 1, nSkipsForAtom(atom1)
1127 +      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1128 +         skip_it = .true.
1129 +         return
1130 +      endif
1131 +   end do
1132 +  
1133 +   return
1134 + end function skipThisPair
1135  
1136 <    !! the rest of these situations can happen in all simulations:
1137 <    do i = 1, nExcludes_global      
1138 <       if ((excludesGlobal(i) == unique_id_1) .or. &
1139 <            (excludesGlobal(i) == unique_id_2)) then
1140 <          skip_it = .true.
1141 <          return
1142 <       endif
1143 <    enddo
1136 > function FF_UsesDirectionalAtoms() result(doesit)
1137 >   logical :: doesit
1138 >   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1139 >        FF_uses_GB .or. FF_uses_RF
1140 > end function FF_UsesDirectionalAtoms
1141 >
1142 > function FF_RequiresPrepairCalc() result(doesit)
1143 >   logical :: doesit
1144 >   doesit = FF_uses_EAM
1145 > end function FF_RequiresPrepairCalc
1146 >
1147 > function FF_RequiresPostpairCalc() result(doesit)
1148 >   logical :: doesit
1149 >   doesit = FF_uses_RF
1150 > end function FF_RequiresPostpairCalc
1151 >
1152 > #ifdef PROFILE
1153 > function getforcetime() result(totalforcetime)
1154 >   real(kind=dp) :: totalforcetime
1155 >   totalforcetime = forcetime
1156 > end function getforcetime
1157 > #endif
1158 >
1159 > !! This cleans componets of force arrays belonging only to fortran
1160  
1161 <    do i = 1, nExcludes_local
1162 <       if (excludesLocal(1,i) == unique_id_1) then
1163 <          if (excludesLocal(2,i) == unique_id_2) then
1164 <             skip_it = .true.
1165 <             return
1166 <          endif
1167 <       else
1168 <          if (excludesLocal(1,i) == unique_id_2) then
1169 <             if (excludesLocal(2,i) == unique_id_1) then
1170 <                skip_it = .true.
1171 <                return
1172 <             endif
1173 <          endif
1174 <       endif
1175 <    end do
1176 <    
1177 <    return
1178 <  end function skipThisPair
1179 <
1180 <  function FF_UsesDirectionalAtoms() result(doesit)
1181 <    logical :: doesit
1182 <    doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1183 <         FF_uses_GB .or. FF_uses_RF
764 <  end function FF_UsesDirectionalAtoms
765 <  
766 <  function FF_RequiresPrepairCalc() result(doesit)
767 <    logical :: doesit
768 <    doesit = FF_uses_EAM
769 <  end function FF_RequiresPrepairCalc
770 <  
771 <  function FF_RequiresPostpairCalc() result(doesit)
772 <    logical :: doesit
773 <    doesit = FF_uses_RF
774 <  end function FF_RequiresPostpairCalc
775 <  
1161 > subroutine add_stress_tensor(dpair, fpair)
1162 >  
1163 >   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1164 >  
1165 >   ! because the d vector is the rj - ri vector, and
1166 >   ! because fx, fy, fz are the force on atom i, we need a
1167 >   ! negative sign here:  
1168 >  
1169 >   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1170 >   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1171 >   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1172 >   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1173 >   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1174 >   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1175 >   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1176 >   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1177 >   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1178 >  
1179 >   virial_Temp = virial_Temp + &
1180 >        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1181 >  
1182 > end subroutine add_stress_tensor
1183 >
1184   end module do_Forces
1185 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines