ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/do_Forces.F90
(Generate patch)

Comparing trunk/OOPSE/libmdtools/do_Forces.F90 (file contents):
Revision 673 by chuckv, Fri Aug 8 21:22:37 2003 UTC vs.
Revision 1217 by gezelter, Tue Jun 1 21:45:22 2004 UTC

# Line 4 | Line 4
4  
5   !! @author Charles F. Vardeman II
6   !! @author Matthew Meineke
7 < !! @version $Id: do_Forces.F90,v 1.28 2003-08-08 21:22:37 chuckv Exp $, $Date: 2003-08-08 21:22:37 $, $Name: not supported by cvs2svn $, $Revision: 1.28 $
7 > !! @version $Id: do_Forces.F90,v 1.68 2004-06-01 21:45:22 gezelter Exp $, $Date: 2004-06-01 21:45:22 $, $Name: not supported by cvs2svn $, $Revision: 1.68 $
8  
9   module do_Forces
10    use force_globals
11    use simulation
12    use definitions
13    use atype_module
14 +  use switcheroo
15    use neighborLists  
16    use lj
17    use sticky_pair
18    use dipole_dipole
19 +  use charge_charge
20    use reaction_field
21    use gb_pair
22    use vector_class
# Line 29 | Line 31 | module do_Forces
31  
32   #define __FORTRAN90
33   #include "fForceField.h"
34 + #include "fSwitchingFunction.h"
35  
36 <  logical, save :: do_forces_initialized = .false., haveRlist = .false.
36 >  INTEGER, PARAMETER:: PREPAIR_LOOP = 1
37 >  INTEGER, PARAMETER:: PAIR_LOOP    = 2
38 >
39 >  logical, save :: haveRlist = .false.
40 >  logical, save :: haveNeighborList = .false.
41    logical, save :: havePolicies = .false.
42 +  logical, save :: haveSIMvariables = .false.
43 +  logical, save :: havePropertyMap = .false.
44 +  logical, save :: haveSaneForceField = .false.
45    logical, save :: FF_uses_LJ
46    logical, save :: FF_uses_sticky
47 +  logical, save :: FF_uses_charges
48    logical, save :: FF_uses_dipoles
49    logical, save :: FF_uses_RF
50    logical, save :: FF_uses_GB
51    logical, save :: FF_uses_EAM
52 +  logical, save :: SIM_uses_LJ
53 +  logical, save :: SIM_uses_sticky
54 +  logical, save :: SIM_uses_charges
55 +  logical, save :: SIM_uses_dipoles
56 +  logical, save :: SIM_uses_RF
57 +  logical, save :: SIM_uses_GB
58 +  logical, save :: SIM_uses_EAM
59 +  logical, save :: SIM_requires_postpair_calc
60 +  logical, save :: SIM_requires_prepair_calc
61 +  logical, save :: SIM_uses_directional_atoms
62 +  logical, save :: SIM_uses_PBC
63 +  logical, save :: SIM_uses_molecular_cutoffs
64  
65    real(kind=dp), save :: rlist, rlistsq
66  
# Line 45 | Line 68 | contains
68    public :: do_force_loop
69    public :: setRlistDF
70  
71 + #ifdef PROFILE
72 +  public :: getforcetime
73 +  real, save :: forceTime = 0
74 +  real :: forceTimeInitial, forceTimeFinal
75 +  integer :: nLoops
76 + #endif
77 +
78 +  type :: Properties
79 +     logical :: is_lj     = .false.
80 +     logical :: is_sticky = .false.
81 +     logical :: is_dp     = .false.
82 +     logical :: is_gb     = .false.
83 +     logical :: is_eam    = .false.
84 +     logical :: is_charge = .false.
85 +     real(kind=DP) :: charge = 0.0_DP
86 +     real(kind=DP) :: dipole_moment = 0.0_DP
87 +  end type Properties
88 +
89 +  type(Properties), dimension(:),allocatable :: PropertyMap
90 +
91   contains
92  
93    subroutine setRlistDF( this_rlist )
# Line 55 | Line 98 | contains
98      rlistsq = rlist * rlist
99      
100      haveRlist = .true.
58    if( havePolicies ) do_forces_initialized = .true.
101  
102    end subroutine setRlistDF    
103  
104 +  subroutine createPropertyMap(status)
105 +    integer :: nAtypes
106 +    integer :: status
107 +    integer :: i
108 +    logical :: thisProperty
109 +    real (kind=DP) :: thisDPproperty
110 +
111 +    status = 0
112 +
113 +    nAtypes = getSize(atypes)
114 +
115 +    if (nAtypes == 0) then
116 +       status = -1
117 +       return
118 +    end if
119 +        
120 +    if (.not. allocated(PropertyMap)) then
121 +       allocate(PropertyMap(nAtypes))
122 +    endif
123 +
124 +    do i = 1, nAtypes
125 +       call getElementProperty(atypes, i, "is_LJ", thisProperty)
126 +       PropertyMap(i)%is_LJ = thisProperty
127 +
128 +       call getElementProperty(atypes, i, "is_Charge", thisProperty)
129 +       PropertyMap(i)%is_Charge = thisProperty
130 +      
131 +       if (thisProperty) then
132 +          call getElementProperty(atypes, i, "charge", thisDPproperty)
133 +          PropertyMap(i)%charge = thisDPproperty
134 +       endif
135 +
136 +       call getElementProperty(atypes, i, "is_DP", thisProperty)
137 +       PropertyMap(i)%is_DP = thisProperty
138 +
139 +       if (thisProperty) then
140 +          call getElementProperty(atypes, i, "dipole_moment", thisDPproperty)
141 +          PropertyMap(i)%dipole_moment = thisDPproperty
142 +       endif
143 +
144 +       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
145 +       PropertyMap(i)%is_Sticky = thisProperty
146 +       call getElementProperty(atypes, i, "is_GB", thisProperty)
147 +       PropertyMap(i)%is_GB = thisProperty
148 +       call getElementProperty(atypes, i, "is_EAM", thisProperty)
149 +       PropertyMap(i)%is_EAM = thisProperty
150 +    end do
151 +
152 +    havePropertyMap = .true.
153 +
154 +  end subroutine createPropertyMap
155 +
156 +  subroutine setSimVariables()
157 +    SIM_uses_LJ = SimUsesLJ()
158 +    SIM_uses_sticky = SimUsesSticky()
159 +    SIM_uses_charges = SimUsesCharges()
160 +    SIM_uses_dipoles = SimUsesDipoles()
161 +    SIM_uses_RF = SimUsesRF()
162 +    SIM_uses_GB = SimUsesGB()
163 +    SIM_uses_EAM = SimUsesEAM()
164 +    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
165 +    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
166 +    SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
167 +    SIM_uses_PBC = SimUsesPBC()
168 +    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
169 +
170 +    haveSIMvariables = .true.
171 +
172 +    return
173 +  end subroutine setSimVariables
174 +
175 +  subroutine doReadyCheck(error)
176 +    integer, intent(out) :: error
177 +
178 +    integer :: myStatus
179 +
180 +    error = 0
181 +    
182 +    if (.not. havePropertyMap) then
183 +
184 +       myStatus = 0
185 +
186 +       call createPropertyMap(myStatus)
187 +
188 +       if (myStatus .ne. 0) then
189 +          write(default_error, *) 'createPropertyMap failed in do_Forces!'
190 +          error = -1
191 +          return
192 +       endif
193 +    endif
194 +
195 +    if (.not. haveSIMvariables) then
196 +       call setSimVariables()
197 +    endif
198 +
199 +    if (.not. haveRlist) then
200 +       write(default_error, *) 'rList has not been set in do_Forces!'
201 +       error = -1
202 +       return
203 +    endif
204 +
205 +    if (SIM_uses_LJ .and. FF_uses_LJ) then
206 +       if (.not. havePolicies) then
207 +          write(default_error, *) 'LJ mixing Policies have not been set in do_Forces!'
208 +          error = -1
209 +          return
210 +       endif
211 +    endif
212 +
213 +    if (.not. haveNeighborList) then
214 +       write(default_error, *) 'neighbor list has not been initialized in do_Forces!'
215 +       error = -1
216 +       return
217 +    end if
218 +
219 +    if (.not. haveSaneForceField) then
220 +       write(default_error, *) 'Force Field is not sane in do_Forces!'
221 +       error = -1
222 +       return
223 +    end if
224 +
225 + #ifdef IS_MPI
226 +    if (.not. isMPISimSet()) then
227 +       write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
228 +       error = -1
229 +       return
230 +    endif
231 + #endif
232 +    return
233 +  end subroutine doReadyCheck
234 +    
235 +
236    subroutine init_FF(LJMIXPOLICY, use_RF_c, thisStat)
237  
238      integer, intent(in) :: LJMIXPOLICY
# Line 83 | Line 257 | contains
257    
258      FF_uses_LJ = .false.
259      FF_uses_sticky = .false.
260 +    FF_uses_charges = .false.
261      FF_uses_dipoles = .false.
262      FF_uses_GB = .false.
263      FF_uses_EAM = .false.
264      
265      call getMatchingElementList(atypes, "is_LJ", .true., nMatches, MatchList)
266      if (nMatches .gt. 0) FF_uses_LJ = .true.
267 <    
267 >
268 >    call getMatchingElementList(atypes, "is_Charge", .true., nMatches, MatchList)
269 >    if (nMatches .gt. 0) FF_uses_charges = .true.  
270 >
271      call getMatchingElementList(atypes, "is_DP", .true., nMatches, MatchList)
272      if (nMatches .gt. 0) FF_uses_dipoles = .true.
273      
# Line 103 | Line 281 | contains
281      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
282      if (nMatches .gt. 0) FF_uses_EAM = .true.
283      
284 +    !! Assume sanity (for the sake of argument)
285 +    haveSaneForceField = .true.
286 +
287      !! check to make sure the FF_uses_RF setting makes sense
288      
289      if (FF_uses_dipoles) then
# Line 114 | Line 295 | contains
295         if (FF_uses_RF) then          
296            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
297            thisStat = -1
298 +          haveSaneForceField = .false.
299            return
300         endif
301      endif
# Line 128 | Line 310 | contains
310         case default
311            write(default_error,*) 'unknown LJ Mixing Policy!'
312            thisStat = -1
313 +          haveSaneForceField = .false.
314            return            
315         end select
316         if (my_status /= 0) then
317            thisStat = -1
318 +          haveSaneForceField = .false.
319            return
320         end if
321 +       havePolicies = .true.
322      endif
323  
324      if (FF_uses_sticky) then
325         call check_sticky_FF(my_status)
326         if (my_status /= 0) then
327            thisStat = -1
328 +          haveSaneForceField = .false.
329            return
330         end if
331      endif
332  
333  
334      if (FF_uses_EAM) then
335 <       call init_EAM_FF(my_status)
335 >         call init_EAM_FF(my_status)
336         if (my_status /= 0) then
337 +          write(default_error, *) "init_EAM_FF returned a bad status"
338            thisStat = -1
339 +          haveSaneForceField = .false.
340            return
341         end if
342      endif
343  
156
157    
344      if (FF_uses_GB) then
345         call check_gb_pair_FF(my_status)
346         if (my_status .ne. 0) then
347            thisStat = -1
348 +          haveSaneForceField = .false.
349            return
350         endif
351      endif
352  
353      if (FF_uses_GB .and. FF_uses_LJ) then
354      endif
355 <    if (.not. do_forces_initialized) then
355 >    if (.not. haveNeighborList) then
356         !! Create neighbor lists
357 <       call expandNeighborList(getNlocal(), my_status)
357 >       call expandNeighborList(nLocal, my_status)
358         if (my_Status /= 0) then
359            write(default_error,*) "SimSetup: ExpandNeighborList returned error."
360            thisStat = -1
361            return
362         endif
363 +       haveNeighborList = .true.
364      endif
177    
365  
366 <    havePolicies = .true.
367 <    if( haveRlist ) do_forces_initialized = .true.
181 <
366 >    
367 >    
368    end subroutine init_FF
369    
370  
371    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
372    !------------------------------------------------------------->
373 <  subroutine do_force_loop(q, A, u_l, f, t, tau, pot, do_pot_c, do_stress_c, &
374 <       error)
373 >  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
374 >       do_pot_c, do_stress_c, error)
375      !! Position array provided by C, dimensioned by getNlocal
376 <    real ( kind = dp ), dimension(3,getNlocal()) :: q
376 >    real ( kind = dp ), dimension(3, nLocal) :: q
377 >    !! molecular center-of-mass position array
378 >    real ( kind = dp ), dimension(3, nGroups) :: q_group
379      !! Rotation Matrix for each long range particle in simulation.
380 <    real( kind = dp), dimension(9,getNlocal()) :: A    
380 >    real( kind = dp), dimension(9, nLocal) :: A    
381      !! Unit vectors for dipoles (lab frame)
382 <    real( kind = dp ), dimension(3,getNlocal()) :: u_l
382 >    real( kind = dp ), dimension(3,nLocal) :: u_l
383      !! Force array provided by C, dimensioned by getNlocal
384 <    real ( kind = dp ), dimension(3,getNlocal()) :: f
384 >    real ( kind = dp ), dimension(3,nLocal) :: f
385      !! Torsion array provided by C, dimensioned by getNlocal
386 <    real( kind = dp ), dimension(3,getNlocal()) :: t    
386 >    real( kind = dp ), dimension(3,nLocal) :: t    
387 >
388      !! Stress Tensor
389      real( kind = dp), dimension(9) :: tau  
390      real ( kind = dp ) :: pot
391      logical ( kind = 2) :: do_pot_c, do_stress_c
392      logical :: do_pot
393      logical :: do_stress
394 +    logical :: in_switching_region
395   #ifdef IS_MPI
396      real( kind = DP ) :: pot_local
397 <    integer :: nrow
398 <    integer :: ncol
397 >    integer :: nAtomsInRow
398 >    integer :: nAtomsInCol
399 >    integer :: nprocs
400 >    integer :: nGroupsInRow
401 >    integer :: nGroupsInCol
402   #endif
210    integer :: nlocal
403      integer :: natoms    
404      logical :: update_nlist  
405 <    integer :: i, j, jbeg, jend, jnab
405 >    integer :: i, j, jstart, jend, jnab
406 >    integer :: istart, iend
407 >    integer :: ia, jb, atom1, atom2
408      integer :: nlist
409 <    real( kind = DP ) ::  rijsq
410 <    real(kind=dp),dimension(3) :: d
409 >    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
410 >    real( kind = DP ) :: sw, dswdr, swderiv, mf
411 >    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
412      real(kind=dp) :: rfpot, mu_i, virial
413 <    integer :: me_i
413 >    integer :: me_i, me_j, n_in_i, n_in_j
414      logical :: is_dp_i
415      integer :: neighborListSize
416      integer :: listerror, error
417      integer :: localError
418 +    integer :: propPack_i, propPack_j
419 +    integer :: loopStart, loopEnd, loop
420  
421 <    real(kind=dp) :: listSkin = 1.0
421 >    real(kind=dp) :: listSkin = 1.0  
422      
226
423      !! initialize local variables  
424 <
424 >    
425   #ifdef IS_MPI
426      pot_local = 0.0_dp
427 <    nlocal = getNlocal()
428 <    nrow   = getNrow(plan_row)
429 <    ncol   = getNcol(plan_col)
427 >    nAtomsInRow   = getNatomsInRow(plan_atom_row)
428 >    nAtomsInCol   = getNatomsInCol(plan_atom_col)
429 >    nGroupsInRow  = getNgroupsInRow(plan_group_row)
430 >    nGroupsInCol  = getNgroupsInCol(plan_group_col)
431   #else
235    nlocal = getNlocal()
432      natoms = nlocal
433   #endif
434 <
435 <    call check_initialization(localError)
434 >    
435 >    call doReadyCheck(localError)
436      if ( localError .ne. 0 ) then
437 <       call handleError("do_force_loop","Not Initialized")
437 >       call handleError("do_force_loop", "Not Initialized")
438         error = -1
439         return
440      end if
441      call zero_work_arrays()
442 <
442 >        
443      do_pot = do_pot_c
444      do_stress = do_stress_c
445 <
250 <
445 >    
446      ! Gather all information needed by all force loops:
447      
448   #ifdef IS_MPI    
449 +    
450 +    call gather(q, q_Row, plan_atom_row_3d)
451 +    call gather(q, q_Col, plan_atom_col_3d)
452  
453 <    call gather(q,q_Row,plan_row3d)
454 <    call gather(q,q_Col,plan_col3d)
453 >    call gather(q_group, q_group_Row, plan_group_row_3d)
454 >    call gather(q_group, q_group_Col, plan_group_col_3d)
455          
456 <    if (FF_UsesDirectionalAtoms() .and. SimUsesDirectionalAtoms()) then
457 <       call gather(u_l,u_l_Row,plan_row3d)
458 <       call gather(u_l,u_l_Col,plan_col3d)
456 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
457 >       call gather(u_l, u_l_Row, plan_atom_row_3d)
458 >       call gather(u_l, u_l_Col, plan_atom_col_3d)
459        
460 <       call gather(A,A_Row,plan_row_rotation)
461 <       call gather(A,A_Col,plan_col_rotation)
460 >       call gather(A, A_Row, plan_atom_row_rotation)
461 >       call gather(A, A_Col, plan_atom_col_rotation)
462      endif
463      
464   #endif
267  
268    if (FF_RequiresPrepairCalc() .and. SimRequiresPrepairCalc()) then
269       !! See if we need to update neighbor lists
270       call checkNeighborList(nlocal, q, listSkin, update_nlist)  
271       !! if_mpi_gather_stuff_for_prepair
272       !! do_prepair_loop_if_needed
273       !! if_mpi_scatter_stuff_from_prepair
274       !! if_mpi_gather_stuff_from_prepair_to_main_loop
275    
276 !--------------------PREFORCE LOOP----------->>>>>>>>>>>>>>>>>>>>>>>>>>>
277 #ifdef IS_MPI
465      
466 <    if (update_nlist) then
467 <      
468 <       !! save current configuration, construct neighbor list,
469 <       !! and calculate forces
470 <       call saveNeighborList(nlocal, q)
471 <      
472 <       neighborListSize = size(list)
473 <       nlist = 0      
474 <      
475 <       do i = 1, nrow
476 <          point(i) = nlist + 1
477 <          
291 <          prepair_inner: do j = 1, ncol
292 <            
293 <             if (skipThisPair(i,j)) cycle prepair_inner
294 <            
295 <             call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
296 <            
297 <             if (rijsq < rlistsq) then            
298 <                
299 <                nlist = nlist + 1
300 <                
301 <                if (nlist > neighborListSize) then
302 <                   call expandNeighborList(nlocal, listerror)
303 <                   if (listerror /= 0) then
304 <                      error = -1
305 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
306 <                      return
307 <                   end if
308 <                   neighborListSize = size(list)
309 <                endif
310 <                
311 <                list(nlist) = j
312 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot_local)                      
313 <             endif
314 <          enddo prepair_inner
315 <       enddo
466 >    !! Begin force loop timing:
467 > #ifdef PROFILE
468 >    call cpu_time(forceTimeInitial)
469 >    nloops = nloops + 1
470 > #endif
471 >    
472 >    loopEnd = PAIR_LOOP
473 >    if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
474 >       loopStart = PREPAIR_LOOP
475 >    else
476 >       loopStart = PAIR_LOOP
477 >    endif
478  
479 <       point(nrow + 1) = nlist + 1
318 <      
319 <    else  !! (of update_check)
479 >    do loop = loopStart, loopEnd
480  
481 <       ! use the list to find the neighbors
482 <       do i = 1, nrow
483 <          JBEG = POINT(i)
484 <          JEND = POINT(i+1) - 1
485 <          ! check thiat molecule i has neighbors
486 <          if (jbeg .le. jend) then
327 <            
328 <             do jnab = jbeg, jend
329 <                j = list(jnab)
330 <
331 <                call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
332 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, &
333 <                     u_l, A, f, t, pot_local)
334 <
335 <             enddo
336 <          endif
337 <       enddo
338 <    endif
339 <    
481 >       ! See if we need to update neighbor lists
482 >       ! (but only on the first time through):
483 >       if (loop .eq. loopStart) then
484 > #ifdef IS_MPI
485 >          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
486 >             update_nlist)
487   #else
488 <    
489 <    if (update_nlist) then
488 >          call checkNeighborList(nGroups, q_group, listSkin, &
489 >             update_nlist)
490 > #endif
491 >       endif
492        
493 <       ! save current configuration, contruct neighbor list,
494 <       ! and calculate forces
495 <       call saveNeighborList(natoms, q)
493 >       if (update_nlist) then
494 >          !! save current configuration and construct neighbor list
495 > #ifdef IS_MPI
496 >          call saveNeighborList(nGroupsInRow, q_group_row)
497 > #else
498 >          call saveNeighborList(nGroups, q_group)
499 > #endif        
500 >          neighborListSize = size(list)
501 >          nlist = 0
502 >       endif
503        
504 <       neighborListSize = size(list)
505 <  
506 <       nlist = 0
507 <
508 <       do i = 1, natoms-1
509 <          point(i) = nlist + 1
510 <          
355 <          prepair_inner: do j = i+1, natoms
356 <            
357 <             if (skipThisPair(i,j))  cycle prepair_inner
358 <                          
359 <             call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
360 <          
504 >       istart = 1
505 > #ifdef IS_MPI
506 >       iend = nGroupsInRow
507 > #else
508 >       iend = nGroups - 1
509 > #endif
510 >       outer: do i = istart, iend
511  
512 <             if (rijsq < rlistsq) then
513 <
514 <          
515 <                nlist = nlist + 1
516 <              
517 <                if (nlist > neighborListSize) then
518 <                   call expandNeighborList(natoms, listerror)
519 <                   if (listerror /= 0) then
520 <                      error = -1
521 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
522 <                      return
523 <                   end if
524 <                   neighborListSize = size(list)
525 <                endif
526 <                
527 <                list(nlist) = j
528 <                
529 <                call do_prepair(i, j, rijsq, d, do_pot, do_stress, &
530 <                        u_l, A, f, t, pot)
531 <                
532 <             endif
533 <          enddo prepair_inner
534 <       enddo
385 <      
386 <       point(natoms) = nlist + 1
387 <      
388 <    else !! (update)
389 <  
390 <       ! use the list to find the neighbors
391 <       do i = 1, natoms-1
392 <          JBEG = POINT(i)
393 <          JEND = POINT(i+1) - 1
394 <          ! check thiat molecule i has neighbors
395 <          if (jbeg .le. jend) then
396 <            
397 <             do jnab = jbeg, jend
512 >          if (update_nlist) point(i) = nlist + 1
513 >          
514 >          n_in_i = groupStartRow(i+1) - groupStartRow(i)
515 >          
516 >          if (update_nlist) then
517 > #ifdef IS_MPI
518 >             jstart = 1
519 >             jend = nGroupsInCol
520 > #else
521 >             jstart = i+1
522 >             jend = nGroups
523 > #endif
524 >          else            
525 >             jstart = point(i)
526 >             jend = point(i+1) - 1
527 >             ! make sure group i has neighbors
528 >             if (jstart .gt. jend) cycle outer
529 >          endif
530 >          
531 >          do jnab = jstart, jend
532 >             if (update_nlist) then
533 >                j = jnab
534 >             else
535                  j = list(jnab)
536 +             endif
537  
400                call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
401                call do_prepair(i, j, rijsq, d, do_pot, do_stress, &
402                     u_l, A, f, t, pot)
403
404             enddo
405          endif
406       enddo
407    endif    
408 #endif
409    !! Do rest of preforce calculations
410    !! do necessary preforce calculations  
411    call do_preforce(nlocal,pot)
412   ! we have already updated the neighbor list set it to false...
413   update_nlist = .false.
414    else
415       !! See if we need to update neighbor lists for non pre-pair
416       call checkNeighborList(nlocal, q, listSkin, update_nlist)  
417    endif
418
419
420
421
422
423 !---------------------------------MAIN Pair LOOP->>>>>>>>>>>>>>>>>>>>>>>>>>>>
424
425
426
427
428  
538   #ifdef IS_MPI
539 <    
540 <    if (update_nlist) then
541 <      
542 <       !! save current configuration, construct neighbor list,
543 <       !! and calculate forces
544 <       call saveNeighborList(nlocal, q)
545 <      
546 <       neighborListSize = size(list)
547 <       nlist = 0      
548 <      
549 <       do i = 1, nrow
550 <          point(i) = nlist + 1
551 <          
552 <          inner: do j = 1, ncol
553 <            
554 <             if (skipThisPair(i,j)) cycle inner
555 <            
556 <             call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
557 <            
558 <             if (rijsq < rlistsq) then            
539 >             call get_interatomic_vector(q_group_Row(:,i), &
540 >                  q_group_Col(:,j), d_grp, rgrpsq)
541 > #else
542 >             call get_interatomic_vector(q_group(:,i), &
543 >                  q_group(:,j), d_grp, rgrpsq)
544 > #endif
545 >
546 >             if (rgrpsq < rlistsq) then
547 >                if (update_nlist) then
548 >                   nlist = nlist + 1
549 >                  
550 >                   if (nlist > neighborListSize) then
551 > #ifdef IS_MPI                
552 >                      call expandNeighborList(nGroupsInRow, listerror)
553 > #else
554 >                      call expandNeighborList(nGroups, listerror)
555 > #endif
556 >                      if (listerror /= 0) then
557 >                         error = -1
558 >                         write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
559 >                         return
560 >                      end if
561 >                      neighborListSize = size(list)
562 >                   endif
563 >                  
564 >                   list(nlist) = j
565 >                endif
566                  
567 <                nlist = nlist + 1
568 <                
569 <                if (nlist > neighborListSize) then
454 <                   call expandNeighborList(nlocal, listerror)
455 <                   if (listerror /= 0) then
456 <                      error = -1
457 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
458 <                      return
459 <                   end if
460 <                   neighborListSize = size(list)
567 >                if (loop .eq. PAIR_LOOP) then
568 >                   vij = 0.0d0
569 >                   fij(1:3) = 0.0d0
570                  endif
571                  
572 <                list(nlist) = j
573 <                                
465 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
466 <                     u_l, A, f, t, pot_local)
572 >                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
573 >                     in_switching_region)
574                  
575 <             endif
576 <          enddo inner
577 <       enddo
575 >                n_in_j = groupStartCol(j+1) - groupStartCol(j)
576 >                
577 >                do ia = groupStartRow(i), groupStartRow(i+1)-1
578 >                  
579 >                   atom1 = groupListRow(ia)
580 >                  
581 >                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
582 >                      
583 >                      atom2 = groupListCol(jb)
584 >                      
585 >                      if (skipThisPair(atom1, atom2)) cycle inner
586  
587 <       point(nrow + 1) = nlist + 1
588 <      
589 <    else  !! (of update_check)
587 >                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
588 >                         d_atm(1:3) = d_grp(1:3)
589 >                         ratmsq = rgrpsq
590 >                      else
591 > #ifdef IS_MPI
592 >                         call get_interatomic_vector(q_Row(:,atom1), &
593 >                              q_Col(:,atom2), d_atm, ratmsq)
594 > #else
595 >                         call get_interatomic_vector(q(:,atom1), &
596 >                              q(:,atom2), d_atm, ratmsq)
597 > #endif
598 >                      endif
599  
600 <       ! use the list to find the neighbors
601 <       do i = 1, nrow
602 <          JBEG = POINT(i)
603 <          JEND = POINT(i+1) - 1
604 <          ! check thiat molecule i has neighbors
481 <          if (jbeg .le. jend) then
482 <            
483 <             do jnab = jbeg, jend
484 <                j = list(jnab)
485 <
486 <                call get_interatomic_vector(q_Row(:,i), q_Col(:,j), d, rijsq)
487 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
488 <                     u_l, A, f, t, pot_local)
489 <
490 <             enddo
491 <          endif
492 <       enddo
493 <    endif
494 <    
600 >                      if (loop .eq. PREPAIR_LOOP) then
601 > #ifdef IS_MPI                      
602 >                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
603 >                              rgrpsq, d_grp, do_pot, do_stress, &
604 >                              u_l, A, f, t, pot_local)
605   #else
606 <    
607 <    if (update_nlist) then
608 <      
609 <       ! save current configuration, contruct neighbor list,
610 <       ! and calculate forces
611 <       call saveNeighborList(natoms, q)
612 <      
613 <       neighborListSize = size(list)
614 <  
615 <       nlist = 0
616 <      
617 <       do i = 1, natoms-1
618 <          point(i) = nlist + 1
619 <          
510 <          inner: do j = i+1, natoms
511 <            
512 <             if (skipThisPair(i,j))  cycle inner
513 <                          
514 <             call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
515 <          
606 >                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
607 >                              rgrpsq, d_grp, do_pot, do_stress, &
608 >                              u_l, A, f, t, pot)
609 > #endif                                              
610 >                      else
611 > #ifdef IS_MPI                      
612 >                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
613 >                              do_pot, &
614 >                              u_l, A, f, t, pot_local, vpair, fpair)
615 > #else
616 >                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
617 >                              do_pot,  &
618 >                              u_l, A, f, t, pot, vpair, fpair)
619 > #endif
620  
621 <             if (rijsq < rlistsq) then
621 >                         vij = vij + vpair
622 >                         fij(1:3) = fij(1:3) + fpair(1:3)
623 >                      endif
624 >                   enddo inner
625 >                enddo
626                  
627 <                nlist = nlist + 1
628 <              
629 <                if (nlist > neighborListSize) then
630 <                   call expandNeighborList(natoms, listerror)
631 <                   if (listerror /= 0) then
632 <                      error = -1
633 <                      write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
634 <                      return
635 <                   end if
636 <                   neighborListSize = size(list)
627 >                if (loop .eq. PAIR_LOOP) then
628 >                   if (in_switching_region) then
629 >                      swderiv = vij*dswdr/rgrp
630 >                      fij(1) = fij(1) + swderiv*d_grp(1)
631 >                      fij(2) = fij(2) + swderiv*d_grp(2)
632 >                      fij(3) = fij(3) + swderiv*d_grp(3)
633 >                      
634 >                      do ia=groupStartRow(i), groupStartRow(i+1)-1
635 >                         atom1=groupListRow(ia)
636 >                         mf = mfactRow(atom1)
637 > #ifdef IS_MPI
638 >                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
639 >                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
640 >                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
641 > #else
642 >                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
643 >                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
644 >                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
645 > #endif
646 >                      enddo
647 >                      
648 >                      do jb=groupStartCol(j), groupStartCol(j+1)-1
649 >                         atom2=groupListCol(jb)
650 >                         mf = mfactCol(atom2)
651 > #ifdef IS_MPI
652 >                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
653 >                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
654 >                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
655 > #else
656 >                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
657 >                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
658 >                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
659 > #endif
660 >                      enddo
661 >                   endif
662 >                  
663 >                   if (do_stress) call add_stress_tensor(d_grp, fij)
664                  endif
665 <                
666 <                list(nlist) = j
667 <                
533 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
534 <                        u_l, A, f, t, pot)
535 <                
536 <             endif
537 <          enddo inner
538 <       enddo
665 >             end if
666 >          enddo
667 >       enddo outer
668        
669 <       point(natoms) = nlist + 1
670 <      
671 <    else !! (update)
672 <      
673 <       ! use the list to find the neighbors
674 <       do i = 1, natoms-1
675 <          JBEG = POINT(i)
676 <          JEND = POINT(i+1) - 1
677 <          ! check thiat molecule i has neighbors
678 <          if (jbeg .le. jend) then
679 <            
551 <             do jnab = jbeg, jend
552 <                j = list(jnab)
553 <
554 <                call get_interatomic_vector(q(:,i), q(:,j), d, rijsq)
555 <                call do_pair(i, j, rijsq, d, do_pot, do_stress, &
556 <                     u_l, A, f, t, pot)
557 <
558 <             enddo
669 >       if (update_nlist) then
670 > #ifdef IS_MPI
671 >          point(nGroupsInRow + 1) = nlist + 1
672 > #else
673 >          point(nGroups) = nlist + 1
674 > #endif
675 >          if (loop .eq. PREPAIR_LOOP) then
676 >             ! we just did the neighbor list update on the first
677 >             ! pass, so we don't need to do it
678 >             ! again on the second pass
679 >             update_nlist = .false.                              
680            endif
681 <       enddo
682 <    endif
681 >       endif
682 >            
683 >       if (loop .eq. PREPAIR_LOOP) then
684 >          call do_preforce(nlocal, pot)
685 >       endif
686 >      
687 >    enddo
688      
689 < #endif
689 >    !! Do timing
690 > #ifdef PROFILE
691 >    call cpu_time(forceTimeFinal)
692 >    forceTime = forceTime + forceTimeFinal - forceTimeInitial
693 > #endif    
694      
565    ! phew, done with main loop.
566    
695   #ifdef IS_MPI
696      !!distribute forces
697 <  
697 >    
698      f_temp = 0.0_dp
699 <    call scatter(f_Row,f_temp,plan_row3d)
699 >    call scatter(f_Row,f_temp,plan_atom_row_3d)
700      do i = 1,nlocal
701         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
702      end do
703 <
703 >    
704      f_temp = 0.0_dp
705 <    call scatter(f_Col,f_temp,plan_col3d)
705 >    call scatter(f_Col,f_temp,plan_atom_col_3d)
706      do i = 1,nlocal
707         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
708      end do
709      
710 <    if (FF_UsesDirectionalAtoms() .and. SimUsesDirectionalAtoms()) then
710 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
711         t_temp = 0.0_dp
712 <       call scatter(t_Row,t_temp,plan_row3d)
712 >       call scatter(t_Row,t_temp,plan_atom_row_3d)
713         do i = 1,nlocal
714            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
715         end do
716         t_temp = 0.0_dp
717 <       call scatter(t_Col,t_temp,plan_col3d)
717 >       call scatter(t_Col,t_temp,plan_atom_col_3d)
718        
719         do i = 1,nlocal
720            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
# Line 595 | Line 723 | contains
723      
724      if (do_pot) then
725         ! scatter/gather pot_row into the members of my column
726 <       call scatter(pot_Row, pot_Temp, plan_row)
727 <
726 >       call scatter(pot_Row, pot_Temp, plan_atom_row)
727 >      
728         ! scatter/gather pot_local into all other procs
729         ! add resultant to get total pot
730         do i = 1, nlocal
# Line 604 | Line 732 | contains
732         enddo
733        
734         pot_Temp = 0.0_DP
735 <
736 <       call scatter(pot_Col, pot_Temp, plan_col)
735 >      
736 >       call scatter(pot_Col, pot_Temp, plan_atom_col)
737         do i = 1, nlocal
738            pot_local = pot_local + pot_Temp(i)
739         enddo
740 <
741 <    endif    
740 >      
741 >    endif
742   #endif
743 <
744 <    if (FF_RequiresPostpairCalc() .and. SimRequiresPostpairCalc()) then
743 >    
744 >    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
745        
746 <       if (FF_uses_RF .and. SimUsesRF()) then
746 >       if (FF_uses_RF .and. SIM_uses_RF) then
747            
748   #ifdef IS_MPI
749 <          call scatter(rf_Row,rf,plan_row3d)
750 <          call scatter(rf_Col,rf_Temp,plan_col3d)
749 >          call scatter(rf_Row,rf,plan_atom_row_3d)
750 >          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
751            do i = 1,nlocal
752               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
753            end do
754   #endif
755            
756 <          do i = 1, getNlocal()
757 <
756 >          do i = 1, nLocal
757 >            
758               rfpot = 0.0_DP
759   #ifdef IS_MPI
760               me_i = atid_row(i)
761   #else
762               me_i = atid(i)
763   #endif
764 <             call getElementProperty(atypes, me_i, "is_DP", is_DP_i)      
765 <             if ( is_DP_i ) then
766 <                call getElementProperty(atypes, me_i, "dipole_moment", mu_i)
764 >            
765 >             if (PropertyMap(me_i)%is_DP) then
766 >                
767 >                mu_i = PropertyMap(me_i)%dipole_moment
768 >                
769                  !! The reaction field needs to include a self contribution
770                  !! to the field:
771 <                call accumulate_self_rf(i, mu_i, u_l)            
771 >                call accumulate_self_rf(i, mu_i, u_l)
772                  !! Get the reaction field contribution to the
773                  !! potential and torques:
774                  call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
# Line 652 | Line 782 | contains
782            enddo
783         endif
784      endif
785 <
786 <
785 >    
786 >    
787   #ifdef IS_MPI
788 <
788 >    
789      if (do_pot) then
790         pot = pot + pot_local
791         !! we assume the c code will do the allreduce to get the total potential
792         !! we could do it right here if we needed to...
793      endif
794 <
794 >    
795      if (do_stress) then
796 <      call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
796 >       call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
797              mpi_comm_world,mpi_err)
798         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
799              mpi_comm_world,mpi_err)
800      endif
801 <
801 >    
802   #else
803 <
803 >    
804      if (do_stress) then
805         tau = tau_Temp
806         virial = virial_Temp
807      endif
678
679 #endif
808      
809 + #endif
810 +      
811    end subroutine do_force_loop
812 +  
813 +  subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
814 +       u_l, A, f, t, pot, vpair, fpair)
815  
816 <  subroutine do_pair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot)
816 >    real( kind = dp ) :: pot, vpair, sw
817 >    real( kind = dp ), dimension(3) :: fpair
818 >    real( kind = dp ), dimension(nLocal)   :: mfact
819 >    real( kind = dp ), dimension(3,nLocal) :: u_l
820 >    real( kind = dp ), dimension(9,nLocal) :: A
821 >    real( kind = dp ), dimension(3,nLocal) :: f
822 >    real( kind = dp ), dimension(3,nLocal) :: t
823  
824 <    real( kind = dp ) :: pot
686 <    real( kind = dp ), dimension(3,getNlocal()) :: u_l
687 <    real (kind=dp), dimension(9,getNlocal()) :: A
688 <    real (kind=dp), dimension(3,getNlocal()) :: f
689 <    real (kind=dp), dimension(3,getNlocal()) :: t
690 <
691 <    logical, intent(inout) :: do_pot, do_stress
824 >    logical, intent(inout) :: do_pot
825      integer, intent(in) :: i, j
826 <    real ( kind = dp ), intent(inout)    :: rijsq
826 >    real ( kind = dp ), intent(inout) :: rijsq
827      real ( kind = dp )                :: r
828      real ( kind = dp ), intent(inout) :: d(3)
696    logical :: is_LJ_i, is_LJ_j
697    logical :: is_DP_i, is_DP_j
698    logical :: is_GB_i, is_GB_j
699    logical :: is_EAM_i,is_EAM_j
700    logical :: is_Sticky_i, is_Sticky_j
829      integer :: me_i, me_j
830  
831      r = sqrt(rijsq)
832 +    vpair = 0.0d0
833 +    fpair(1:3) = 0.0d0
834  
835   #ifdef IS_MPI
706    if (tagRow(i) .eq. tagColumn(j)) then
707       write(0,*) 'do_pair is doing', i , j, tagRow(i), tagColumn(j)
708    endif
709
836      me_i = atid_row(i)
837      me_j = atid_col(j)
712
838   #else
714
839      me_i = atid(i)
840      me_j = atid(j)
717
841   #endif
842 <
843 <    if (FF_uses_LJ .and. SimUsesLJ()) then
844 <       call getElementProperty(atypes, me_i, "is_LJ", is_LJ_i)
845 <       call getElementProperty(atypes, me_j, "is_LJ", is_LJ_j)
846 <
847 <       if ( is_LJ_i .and. is_LJ_j ) &
848 <            call do_lj_pair(i, j, d, r, rijsq, pot, f, do_pot, do_stress)
842 >    
843 >    if (FF_uses_LJ .and. SIM_uses_LJ) then
844 >      
845 >       if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
846 >          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
847 >       endif
848 >      
849      endif
850 <
851 <    if (FF_uses_dipoles .and. SimUsesDipoles()) then
729 <       call getElementProperty(atypes, me_i, "is_DP", is_DP_i)
730 <       call getElementProperty(atypes, me_j, "is_DP", is_DP_j)
850 >    
851 >    if (FF_uses_charges .and. SIM_uses_charges) then
852        
853 <       if ( is_DP_i .and. is_DP_j ) then
854 <          
734 <          call do_dipole_pair(i, j, d, r, rijsq, pot, u_l, f, t, &
735 <               do_pot, do_stress)
736 <          if (FF_uses_RF .and. SimUsesRF()) then
737 <             call accumulate_rf(i, j, r, u_l)
738 <             call rf_correct_forces(i, j, d, r, u_l, f, do_stress)
739 <          endif
740 <          
853 >       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
854 >          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
855         endif
856 +      
857      endif
858 +    
859 +    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
860 +      
861 +       if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
862 +          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
863 +               do_pot)
864 +          if (FF_uses_RF .and. SIM_uses_RF) then
865 +             call accumulate_rf(i, j, r, u_l, sw)
866 +             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
867 +          endif          
868 +       endif
869  
870 <    if (FF_uses_Sticky .and. SimUsesSticky()) then
870 >    endif
871  
872 <       call getElementProperty(atypes, me_i, "is_Sticky", is_Sticky_i)
747 <       call getElementProperty(atypes, me_j, "is_Sticky", is_Sticky_j)
872 >    if (FF_uses_Sticky .and. SIM_uses_sticky) then
873  
874 <       if ( is_Sticky_i .and. is_Sticky_j ) then
875 <          call do_sticky_pair(i, j, d, r, rijsq, A, pot, f, t, &
876 <               do_pot, do_stress)
874 >       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
875 >          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
876 >               do_pot)
877         endif
878 +
879      endif
880  
881  
882 <    if (FF_uses_GB .and. SimUsesGB()) then
882 >    if (FF_uses_GB .and. SIM_uses_GB) then
883 >      
884 >       if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
885 >          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
886 >               do_pot)
887 >       endif
888  
889 <       call getElementProperty(atypes, me_i, "is_GB", is_GB_i)
759 <       call getElementProperty(atypes, me_j, "is_GB", is_GB_j)
889 >    endif
890        
891 <       if ( is_GB_i .and. is_GB_j ) then
892 <          call do_gb_pair(i, j, d, r, rijsq, u_l, pot, f, t, &
893 <               do_pot, do_stress)          
891 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
892 >      
893 >       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
894 >          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
895 >               do_pot)
896         endif
897 +      
898      endif
899 <    
767 <
768 <  
769 <   if (FF_uses_EAM .and. SimUsesEAM()) then
770 <      call getElementProperty(atypes, me_i, "is_EAM", is_EAM_i)
771 <      call getElementProperty(atypes, me_j, "is_EAM", is_EAM_j)
772 <      
773 <      if ( is_EAM_i .and. is_EAM_j ) &
774 <           call do_eam_pair(i, j, d, r, rijsq, pot, f, do_pot, do_stress)
775 <   endif
776 <
777 <
778 <
779 <
899 >    
900    end subroutine do_pair
901  
902 <
902 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
903 >       do_pot, do_stress, u_l, A, f, t, pot)
904  
905 <  subroutine do_prepair(i, j, rijsq, d, do_pot, do_stress, u_l, A, f, t, pot)
906 <   real( kind = dp ) :: pot
907 <   real( kind = dp ), dimension(3,getNlocal()) :: u_l
908 <   real (kind=dp), dimension(9,getNlocal()) :: A
909 <   real (kind=dp), dimension(3,getNlocal()) :: f
789 <   real (kind=dp), dimension(3,getNlocal()) :: t
905 >   real( kind = dp ) :: pot, sw
906 >   real( kind = dp ), dimension(3,nLocal) :: u_l
907 >   real (kind=dp), dimension(9,nLocal) :: A
908 >   real (kind=dp), dimension(3,nLocal) :: f
909 >   real (kind=dp), dimension(3,nLocal) :: t
910    
911     logical, intent(inout) :: do_pot, do_stress
912     integer, intent(in) :: i, j
913 <   real ( kind = dp ), intent(inout)    :: rijsq
914 <   real ( kind = dp )                :: r
915 <   real ( kind = dp ), intent(inout) :: d(3)
913 >   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
914 >   real ( kind = dp )                :: r, rc
915 >   real ( kind = dp ), intent(inout) :: d(3), dc(3)
916    
917     logical :: is_EAM_i, is_EAM_j
918    
919     integer :: me_i, me_j
920    
801   r = sqrt(rijsq)
802  
921  
922 < #ifdef IS_MPI
923 <   if (tagRow(i) .eq. tagColumn(j)) then
924 <      write(0,*) 'do_pair is doing', i , j, tagRow(i), tagColumn(j)
925 <   endif
922 >    r = sqrt(rijsq)
923 >    if (SIM_uses_molecular_cutoffs) then
924 >       rc = sqrt(rcijsq)
925 >    else
926 >       rc = r
927 >    endif
928    
929 +
930 + #ifdef IS_MPI  
931     me_i = atid_row(i)
932 <   me_j = atid_col(j)
933 <  
812 < #else
813 <  
932 >   me_j = atid_col(j)  
933 > #else  
934     me_i = atid(i)
935 <   me_j = atid(j)
816 <  
935 >   me_j = atid(j)  
936   #endif
937 <    
938 <   if (FF_uses_EAM .and. SimUsesEAM()) then
820 <      call getElementProperty(atypes, me_i, "is_EAM", is_EAM_i)
821 <      call getElementProperty(atypes, me_j, "is_EAM", is_EAM_j)
937 >  
938 >   if (FF_uses_EAM .and. SIM_uses_EAM) then
939        
940 <      if ( is_EAM_i .and. is_EAM_j ) &
940 >      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
941             call calc_EAM_prepair_rho(i, j, d, r, rijsq )
942 +      
943     endif
944 <
944 >  
945   end subroutine do_prepair
828
829
830
831
832  subroutine do_preforce(nlocal,pot)
833    integer :: nlocal
834    real( kind = dp ) :: pot
835
836    if (FF_uses_EAM .and. SimUsesEAM()) then
837       call calc_EAM_preforce_Frho(nlocal,pot)
838    endif
839
840
841  end subroutine do_preforce
842  
843  
844  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
845    
846    real (kind = dp), dimension(3) :: q_i
847    real (kind = dp), dimension(3) :: q_j
848    real ( kind = dp ), intent(out) :: r_sq
849    real( kind = dp ) :: d(3), scaled(3)
850    integer i
851
852    d(1:3) = q_j(1:3) - q_i(1:3)
853
854    ! Wrap back into periodic box if necessary
855    if ( SimUsesPBC() ) then
856      
857       if( .not.boxIsOrthorhombic ) then
858          ! calc the scaled coordinates.
859          
860          scaled = matmul(HmatInv, d)
861          
862          ! wrap the scaled coordinates
863
864          scaled = scaled  - anint(scaled)
865          
866
867          ! calc the wrapped real coordinates from the wrapped scaled
868          ! coordinates
869
870          d = matmul(Hmat,scaled)
871
872       else
873          ! calc the scaled coordinates.
874          
875          do i = 1, 3
876             scaled(i) = d(i) * HmatInv(i,i)
877            
878             ! wrap the scaled coordinates
879            
880             scaled(i) = scaled(i) - anint(scaled(i))
881            
882             ! calc the wrapped real coordinates from the wrapped scaled
883             ! coordinates
884
885             d(i) = scaled(i)*Hmat(i,i)
886          enddo
887       endif
888      
889    endif
890    
891    r_sq = dot_product(d,d)
892    
893  end subroutine get_interatomic_vector
894  
895  subroutine check_initialization(error)
896    integer, intent(out) :: error
897    
898    error = 0
899    ! Make sure we are properly initialized.
900    if (.not. do_forces_initialized) then
901       write(*,*) "Forces not initialized"
902       error = -1
903       return
904    endif
905
906 #ifdef IS_MPI
907    if (.not. isMPISimSet()) then
908       write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
909       error = -1
910       return
911    endif
912 #endif
913    
914    return
915  end subroutine check_initialization
916
917  
918  subroutine zero_work_arrays()
919    
920 #ifdef IS_MPI
921
922    q_Row = 0.0_dp
923    q_Col = 0.0_dp  
924    
925    u_l_Row = 0.0_dp
926    u_l_Col = 0.0_dp
927    
928    A_Row = 0.0_dp
929    A_Col = 0.0_dp
930    
931    f_Row = 0.0_dp
932    f_Col = 0.0_dp
933    f_Temp = 0.0_dp
934      
935    t_Row = 0.0_dp
936    t_Col = 0.0_dp
937    t_Temp = 0.0_dp
946  
947 <    pot_Row = 0.0_dp
948 <    pot_Col = 0.0_dp
949 <    pot_Temp = 0.0_dp
950 <
951 <    rf_Row = 0.0_dp
952 <    rf_Col = 0.0_dp
953 <    rf_Temp = 0.0_dp
947 >
948 > subroutine do_preforce(nlocal,pot)
949 >   integer :: nlocal
950 >   real( kind = dp ) :: pot
951 >  
952 >   if (FF_uses_EAM .and. SIM_uses_EAM) then
953 >      call calc_EAM_preforce_Frho(nlocal,pot)
954 >   endif
955 >  
956 >  
957 > end subroutine do_preforce
958 >
959 >
960 > subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
961 >  
962 >   real (kind = dp), dimension(3) :: q_i
963 >   real (kind = dp), dimension(3) :: q_j
964 >   real ( kind = dp ), intent(out) :: r_sq
965 >   real( kind = dp ) :: d(3), scaled(3)
966 >   integer i
967 >  
968 >   d(1:3) = q_j(1:3) - q_i(1:3)
969 >  
970 >   ! Wrap back into periodic box if necessary
971 >   if ( SIM_uses_PBC ) then
972 >      
973 >      if( .not.boxIsOrthorhombic ) then
974 >         ! calc the scaled coordinates.
975 >        
976 >         scaled = matmul(HmatInv, d)
977 >        
978 >         ! wrap the scaled coordinates
979 >        
980 >         scaled = scaled  - anint(scaled)
981 >        
982 >        
983 >         ! calc the wrapped real coordinates from the wrapped scaled
984 >         ! coordinates
985 >        
986 >         d = matmul(Hmat,scaled)
987 >        
988 >      else
989 >         ! calc the scaled coordinates.
990 >        
991 >         do i = 1, 3
992 >            scaled(i) = d(i) * HmatInv(i,i)
993 >            
994 >            ! wrap the scaled coordinates
995 >            
996 >            scaled(i) = scaled(i) - anint(scaled(i))
997 >            
998 >            ! calc the wrapped real coordinates from the wrapped scaled
999 >            ! coordinates
1000 >            
1001 >            d(i) = scaled(i)*Hmat(i,i)
1002 >         enddo
1003 >      endif
1004 >      
1005 >   endif
1006 >  
1007 >   r_sq = dot_product(d,d)
1008 >  
1009 > end subroutine get_interatomic_vector
1010 >
1011 > subroutine zero_work_arrays()
1012 >  
1013 > #ifdef IS_MPI
1014 >  
1015 >   q_Row = 0.0_dp
1016 >   q_Col = 0.0_dp
1017  
1018 +   q_group_Row = 0.0_dp
1019 +   q_group_Col = 0.0_dp  
1020 +  
1021 +   u_l_Row = 0.0_dp
1022 +   u_l_Col = 0.0_dp
1023 +  
1024 +   A_Row = 0.0_dp
1025 +   A_Col = 0.0_dp
1026 +  
1027 +   f_Row = 0.0_dp
1028 +   f_Col = 0.0_dp
1029 +   f_Temp = 0.0_dp
1030 +  
1031 +   t_Row = 0.0_dp
1032 +   t_Col = 0.0_dp
1033 +   t_Temp = 0.0_dp
1034 +  
1035 +   pot_Row = 0.0_dp
1036 +   pot_Col = 0.0_dp
1037 +   pot_Temp = 0.0_dp
1038 +  
1039 +   rf_Row = 0.0_dp
1040 +   rf_Col = 0.0_dp
1041 +   rf_Temp = 0.0_dp
1042 +  
1043   #endif
948
1044  
1045 <    if (FF_uses_EAM .and. SimUsesEAM()) then
1046 <       call clean_EAM()
1047 <    endif
1048 <
1049 <
1050 <
1051 <
1052 <
1053 <    rf = 0.0_dp
1054 <    tau_Temp = 0.0_dp
1055 <    virial_Temp = 0.0_dp
1056 <  end subroutine zero_work_arrays
1057 <  
1058 <  function skipThisPair(atom1, atom2) result(skip_it)
1059 <    integer, intent(in) :: atom1
1060 <    integer, intent(in), optional :: atom2
1061 <    logical :: skip_it
1062 <    integer :: unique_id_1, unique_id_2
1063 <    integer :: me_i,me_j
1064 <    integer :: i
1065 <
1066 <    skip_it = .false.
1067 <    
1068 <    !! there are a number of reasons to skip a pair or a particle
1069 <    !! mostly we do this to exclude atoms who are involved in short
975 <    !! range interactions (bonds, bends, torsions), but we also need
976 <    !! to exclude some overcounted interactions that result from
977 <    !! the parallel decomposition
978 <    
1045 >   if (FF_uses_EAM .and. SIM_uses_EAM) then
1046 >      call clean_EAM()
1047 >   endif
1048 >  
1049 >   rf = 0.0_dp
1050 >   tau_Temp = 0.0_dp
1051 >   virial_Temp = 0.0_dp
1052 > end subroutine zero_work_arrays
1053 >
1054 > function skipThisPair(atom1, atom2) result(skip_it)
1055 >   integer, intent(in) :: atom1
1056 >   integer, intent(in), optional :: atom2
1057 >   logical :: skip_it
1058 >   integer :: unique_id_1, unique_id_2
1059 >   integer :: me_i,me_j
1060 >   integer :: i
1061 >  
1062 >   skip_it = .false.
1063 >  
1064 >   !! there are a number of reasons to skip a pair or a particle
1065 >   !! mostly we do this to exclude atoms who are involved in short
1066 >   !! range interactions (bonds, bends, torsions), but we also need
1067 >   !! to exclude some overcounted interactions that result from
1068 >   !! the parallel decomposition
1069 >  
1070   #ifdef IS_MPI
1071 <    !! in MPI, we have to look up the unique IDs for each atom
1072 <    unique_id_1 = tagRow(atom1)
1071 >   !! in MPI, we have to look up the unique IDs for each atom
1072 >   unique_id_1 = AtomRowToGlobal(atom1)
1073   #else
1074 <    !! in the normal loop, the atom numbers are unique
1075 <    unique_id_1 = atom1
1074 >   !! in the normal loop, the atom numbers are unique
1075 >   unique_id_1 = atom1
1076   #endif
1077 <
1078 <    !! We were called with only one atom, so just check the global exclude
1079 <    !! list for this atom
1080 <    if (.not. present(atom2)) then
1081 <       do i = 1, nExcludes_global
1082 <          if (excludesGlobal(i) == unique_id_1) then
1083 <             skip_it = .true.
1084 <             return
1085 <          end if
1086 <       end do
1087 <       return
1088 <    end if
1089 <    
1077 >  
1078 >   !! We were called with only one atom, so just check the global exclude
1079 >   !! list for this atom
1080 >   if (.not. present(atom2)) then
1081 >      do i = 1, nExcludes_global
1082 >         if (excludesGlobal(i) == unique_id_1) then
1083 >            skip_it = .true.
1084 >            return
1085 >         end if
1086 >      end do
1087 >      return
1088 >   end if
1089 >  
1090   #ifdef IS_MPI
1091 <    unique_id_2 = tagColumn(atom2)
1091 >   unique_id_2 = AtomColToGlobal(atom2)
1092   #else
1093 <    unique_id_2 = atom2
1093 >   unique_id_2 = atom2
1094   #endif
1095 <
1095 >  
1096   #ifdef IS_MPI
1097 <    !! this situation should only arise in MPI simulations
1098 <    if (unique_id_1 == unique_id_2) then
1099 <       skip_it = .true.
1100 <       return
1101 <    end if
1102 <    
1103 <    !! this prevents us from doing the pair on multiple processors
1104 <    if (unique_id_1 < unique_id_2) then
1105 <       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1106 <          skip_it = .true.
1107 <          return
1108 <       endif
1109 <    else                
1110 <       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1111 <          skip_it = .true.
1112 <          return
1113 <       endif
1114 <    endif
1097 >   !! this situation should only arise in MPI simulations
1098 >   if (unique_id_1 == unique_id_2) then
1099 >      skip_it = .true.
1100 >      return
1101 >   end if
1102 >  
1103 >   !! this prevents us from doing the pair on multiple processors
1104 >   if (unique_id_1 < unique_id_2) then
1105 >      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1106 >         skip_it = .true.
1107 >         return
1108 >      endif
1109 >   else                
1110 >      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1111 >         skip_it = .true.
1112 >         return
1113 >      endif
1114 >   endif
1115   #endif
1116 +  
1117 +   !! the rest of these situations can happen in all simulations:
1118 +   do i = 1, nExcludes_global      
1119 +      if ((excludesGlobal(i) == unique_id_1) .or. &
1120 +           (excludesGlobal(i) == unique_id_2)) then
1121 +         skip_it = .true.
1122 +         return
1123 +      endif
1124 +   enddo
1125 +  
1126 +   do i = 1, nSkipsForAtom(atom1)
1127 +      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1128 +         skip_it = .true.
1129 +         return
1130 +      endif
1131 +   end do
1132 +  
1133 +   return
1134 + end function skipThisPair
1135  
1136 <    !! the rest of these situations can happen in all simulations:
1137 <    do i = 1, nExcludes_global      
1138 <       if ((excludesGlobal(i) == unique_id_1) .or. &
1139 <            (excludesGlobal(i) == unique_id_2)) then
1140 <          skip_it = .true.
1141 <          return
1142 <       endif
1143 <    enddo
1136 > function FF_UsesDirectionalAtoms() result(doesit)
1137 >   logical :: doesit
1138 >   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1139 >        FF_uses_GB .or. FF_uses_RF
1140 > end function FF_UsesDirectionalAtoms
1141 >
1142 > function FF_RequiresPrepairCalc() result(doesit)
1143 >   logical :: doesit
1144 >   doesit = FF_uses_EAM
1145 > end function FF_RequiresPrepairCalc
1146 >
1147 > function FF_RequiresPostpairCalc() result(doesit)
1148 >   logical :: doesit
1149 >   doesit = FF_uses_RF
1150 > end function FF_RequiresPostpairCalc
1151 >
1152 > #ifdef PROFILE
1153 > function getforcetime() result(totalforcetime)
1154 >   real(kind=dp) :: totalforcetime
1155 >   totalforcetime = forcetime
1156 > end function getforcetime
1157 > #endif
1158 >
1159 > !! This cleans componets of force arrays belonging only to fortran
1160  
1161 <    do i = 1, nExcludes_local
1162 <       if (excludesLocal(1,i) == unique_id_1) then
1163 <          if (excludesLocal(2,i) == unique_id_2) then
1164 <             skip_it = .true.
1165 <             return
1166 <          endif
1167 <       else
1168 <          if (excludesLocal(1,i) == unique_id_2) then
1169 <             if (excludesLocal(2,i) == unique_id_1) then
1170 <                skip_it = .true.
1171 <                return
1172 <             endif
1173 <          endif
1174 <       endif
1175 <    end do
1176 <    
1177 <    return
1178 <  end function skipThisPair
1179 <
1180 <  function FF_UsesDirectionalAtoms() result(doesit)
1181 <    logical :: doesit
1182 <    doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1183 <         FF_uses_GB .or. FF_uses_RF
1058 <  end function FF_UsesDirectionalAtoms
1059 <  
1060 <  function FF_RequiresPrepairCalc() result(doesit)
1061 <    logical :: doesit
1062 <    doesit = FF_uses_EAM
1063 <  end function FF_RequiresPrepairCalc
1064 <  
1065 <  function FF_RequiresPostpairCalc() result(doesit)
1066 <    logical :: doesit
1067 <    doesit = FF_uses_RF
1068 <  end function FF_RequiresPostpairCalc
1069 <  
1070 < !! This cleans componets of force arrays belonging only to fortran
1071 <
1161 > subroutine add_stress_tensor(dpair, fpair)
1162 >  
1163 >   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1164 >  
1165 >   ! because the d vector is the rj - ri vector, and
1166 >   ! because fx, fy, fz are the force on atom i, we need a
1167 >   ! negative sign here:  
1168 >  
1169 >   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1170 >   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1171 >   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1172 >   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1173 >   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1174 >   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1175 >   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1176 >   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1177 >   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1178 >  
1179 >   virial_Temp = virial_Temp + &
1180 >        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1181 >  
1182 > end subroutine add_stress_tensor
1183 >
1184   end module do_Forces
1185 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines