ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/mpiSimulation.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/mpiSimulation.cpp (file contents):
Revision 406 by chuckv, Wed Mar 26 19:34:49 2003 UTC vs.
Revision 441 by chuckv, Tue Apr 1 16:50:14 2003 UTC

# Line 1 | Line 1
1   #ifdef IS_MPI
2 <
2 > #include <iostream>
3   #include <cstdlib>
4   #include <cstring>
5 + #include <cmath>
6   #include <mpi.h>
7   #include <mpi++.h>
8  
# Line 10 | Line 11
11   #include "fortranWrappers.hpp"
12   #include "randomSPRNG.hpp"
13  
14 + #define BASE_SEED 123456789
15  
16   mpiSimulation* mpiSim;
17  
# Line 23 | Line 25 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug)
25  
26    MolToProcMap = new int[entryPlug->n_mol];
27    MolComponentType = new int[entryPlug->n_mol];
26
28    AtomToProcMap = new int[entryPlug->n_atoms];
29  
30    mpiSim = this;
# Line 33 | Line 34 | mpiSimulation::~mpiSimulation(){
34  
35   mpiSimulation::~mpiSimulation(){
36    
37 +  delete[] MolToProcMap;
38 +  delete[] MolComponentType;
39 +  delete[] AtomToProcMap;
40 +
41    delete mpiPlug;
42    // perhaps we should let fortran know the party is over.
43    
# Line 44 | Line 49 | int* mpiSimulation::divideLabor( void ){
49  
50    int nComponents;
51    MoleculeStamp** compStamps;
52 <  randomSPRNG myRandom;
52 >  randomSPRNG *myRandom;
53    int* componentsNmol;
54    int* AtomsPerProc;
55  
# Line 58 | Line 63 | int* mpiSimulation::divideLabor( void ){
63    int molIndex, atomIndex, compIndex, compStart;
64    int done;
65    int nLocal, molLocal;
66 <  int i, index;
66 >  int i, j, loops, which_proc, nmol_local, natoms_local;
67 >  int nmol_global, natoms_global;
68 >  int local_index, index;
69    int smallDiff, bigDiff;
70 +  int baseSeed = BASE_SEED;
71  
72    int testSum;
73  
# Line 75 | Line 83 | int* mpiSimulation::divideLabor( void ){
83    mpiPlug->nSRIGlobal = entryPlug->n_SRI;
84    mpiPlug->nMolGlobal = entryPlug->n_mol;
85  
86 <  myRandom = new randomSPRNG();
86 >  myRandom = new randomSPRNG( baseSeed );
87  
88 <  a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal;
88 >  a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal;
89  
90    // Initialize things that we'll send out later:
91    for (i = 0; i < mpiPlug->numberProcessors; i++ ) {
# Line 120 | Line 128 | int* mpiSimulation::divideLabor( void ){
128          
129          // Pick a processor at random
130  
131 <        which_proc = (int) (myRandom.getRandom() * mpiPlug->numberProcessors);
131 >        which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors);
132  
133          // How many atoms does this processor have?
134          
135          old_atoms = AtomsPerProc[which_proc];
136 <
129 <        // If the processor already had too many atoms, just skip this
130 <        // processor and try again.
131 <
132 <        if (old_atoms >= nTarget) continue;
133 <
134 <        add_atoms = compStamps[MolComponentType[i]]->getNatoms();
136 >        add_atoms = compStamps[MolComponentType[i]]->getNAtoms();
137          new_atoms = old_atoms + add_atoms;
136    
137        // If we can add this molecule to this processor without sending
138        // it above nTarget, then go ahead and do it:
139    
140        if (new_atoms <= nTarget) {
141          MolToProcMap[i] = which_proc;
142          AtomsPerProc[which_proc] += add_atoms;
143          for (j = 0 ; j < add_atoms; j++ ) {
144            atomIndex++;
145            AtomToProcMap[atomIndex] = which_proc;
146          }
147          done = 1;
148          continue;
149        }
138  
139          // If we've been through this loop too many times, we need
140          // to just give up and assign the molecule to this processor
# Line 164 | Line 152 | int* mpiSimulation::divideLabor( void ){
152            MolToProcMap[i] = which_proc;
153            AtomsPerProc[which_proc] += add_atoms;
154            for (j = 0 ; j < add_atoms; j++ ) {
155 <            atomIndex++;
156 <            AtomToProcMap[atomIndex] = which_proc;
155 >            AtomToProcMap[atomIndex] = which_proc;
156 >            atomIndex++;
157            }
158            done = 1;
159            continue;
160          }
161 +    
162 +        // If we can add this molecule to this processor without sending
163 +        // it above nTarget, then go ahead and do it:
164 +    
165 +        if (new_atoms <= nTarget) {
166 +          MolToProcMap[i] = which_proc;
167 +          AtomsPerProc[which_proc] += add_atoms;
168 +          for (j = 0 ; j < add_atoms; j++ ) {
169 +            AtomToProcMap[atomIndex] = which_proc;
170 +            atomIndex++;
171 +          }
172 +          done = 1;
173 +          continue;
174 +        }
175  
174        // The only situation left is where old_atoms < nTarget, but
175        // new_atoms > nTarget.   We want to accept this with some
176        // probability that dies off the farther we are from nTarget
176  
177 +        // The only situation left is when new_atoms > nTarget.  We
178 +        // want to accept this with some probability that dies off the
179 +        // farther we are from nTarget
180 +
181          // roughly:  x = new_atoms - nTarget
182          //           Pacc(x) = exp(- a * x)
183 <        // where a = 1 / (average atoms per molecule)
183 >        // where a = penalty / (average atoms per molecule)
184  
185          x = (double) (new_atoms - nTarget);
186 <        y = myRandom.getRandom();
187 <        
188 <        if (exp(- a * x) > y) {
186 >        y = myRandom->getRandom();
187 >      
188 >        if (y < exp(- a * x)) {
189            MolToProcMap[i] = which_proc;
190            AtomsPerProc[which_proc] += add_atoms;
191            for (j = 0 ; j < add_atoms; j++ ) {
192 <            atomIndex++;
193 <            AtomToProcMap[atomIndex] = which_proc;
194 <          }
192 >            AtomToProcMap[atomIndex] = which_proc;
193 >            atomIndex++;
194 >           }
195            done = 1;
196            continue;
197          } else {
# Line 200 | Line 203 | int* mpiSimulation::divideLabor( void ){
203  
204      // Spray out this nonsense to all other processors:
205  
206 <    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,
206 >    MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal,
207                            MPI_INT, 0);
208  
209 <    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,
209 >    MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,
210                            MPI_INT, 0);
211  
212 <    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,
212 >    MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal,
213                            MPI_INT, 0);
214  
215 <    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors,
215 >    MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors,
216                            MPI_INT, 0);    
217    } else {
218  
219      // Listen to your marching orders from processor 0:
220      
221 <    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,
221 >    MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal,
222                            MPI_INT, 0);
223      
224 <    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,
224 >    MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,
225                            MPI_INT, 0);
226  
227 <    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,
227 >    MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal,
228                            MPI_INT, 0);
229      
230 <    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors,
230 >    MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors,
231                            MPI_INT, 0);
232 +
233 +
234    }
235  
236  
# Line 277 | Line 282 | int* mpiSimulation::divideLabor( void ){
282    local_index = 0;
283    for (i = 0; i < mpiPlug->nAtomsGlobal; i++) {
284      if (AtomToProcMap[i] == mpiPlug->myNode) {
280      local_index++;
285        globalIndex[local_index] = i;
286 +      local_index++;
287      }
288    }
289    
290 <
286 <
287 <
288 <   index = mpiPlug->myAtomStart;
289 < //   for( i=0; i<mpiPlug->myNlocal; i++){
290 < //     globalIndex[i] = index;
291 < //     index++;
292 < //   }
293 <
294 < //   return globalIndex;
290 >  return globalIndex;
291   }
292  
293  
# Line 300 | Line 296 | void mpiSimulation::mpiRefresh( void ){
296    int isError, i;
297    int *globalIndex = new int[mpiPlug->myNlocal];
298  
299 <  for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex();
299 >  // Fortran indexing needs to be increased by 1 in order to get the 2 languages to
300 >  // not barf
301  
302 +  for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1;
303 +
304    
305    isError = 0;
306    setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError );

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines