| 4 |
|
#include <cstring> |
| 5 |
|
#include <cmath> |
| 6 |
|
#include <mpi.h> |
| 7 |
– |
#include <mpi++.h> |
| 7 |
|
|
| 8 |
|
#include "mpiSimulation.hpp" |
| 9 |
|
#include "simError.h" |
| 19 |
|
entryPlug = the_entryPlug; |
| 20 |
|
mpiPlug = new mpiSimData; |
| 21 |
|
|
| 22 |
< |
mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
| 22 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->numberProcessors) ); |
| 23 |
|
mpiPlug->myNode = worldRank; |
| 24 |
|
|
| 25 |
|
MolToProcMap = new int[entryPlug->n_mol]; |
| 84 |
|
|
| 85 |
|
myRandom = new randomSPRNG( baseSeed ); |
| 86 |
|
|
| 87 |
< |
a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
| 87 |
> |
a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
| 88 |
|
|
| 89 |
|
// Initialize things that we'll send out later: |
| 90 |
|
for (i = 0; i < mpiPlug->numberProcessors; i++ ) { |
| 135 |
|
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
| 136 |
|
new_atoms = old_atoms + add_atoms; |
| 137 |
|
|
| 139 |
– |
// If the processor already had too many atoms, just skip this |
| 140 |
– |
// processor and try again. |
| 141 |
– |
|
| 138 |
|
// If we've been through this loop too many times, we need |
| 139 |
|
// to just give up and assign the molecule to this processor |
| 140 |
|
// and be done with it. |
| 157 |
|
done = 1; |
| 158 |
|
continue; |
| 159 |
|
} |
| 164 |
– |
|
| 165 |
– |
if (old_atoms >= nTarget) continue; |
| 160 |
|
|
| 161 |
|
// If we can add this molecule to this processor without sending |
| 162 |
|
// it above nTarget, then go ahead and do it: |
| 173 |
|
} |
| 174 |
|
|
| 175 |
|
|
| 176 |
< |
// The only situation left is where old_atoms < nTarget, but |
| 177 |
< |
// new_atoms > nTarget. We want to accept this with some |
| 178 |
< |
// probability that dies off the farther we are from nTarget |
| 176 |
> |
// The only situation left is when new_atoms > nTarget. We |
| 177 |
> |
// want to accept this with some probability that dies off the |
| 178 |
> |
// farther we are from nTarget |
| 179 |
|
|
| 180 |
|
// roughly: x = new_atoms - nTarget |
| 181 |
|
// Pacc(x) = exp(- a * x) |
| 182 |
< |
// where a = 1 / (average atoms per molecule) |
| 182 |
> |
// where a = penalty / (average atoms per molecule) |
| 183 |
|
|
| 184 |
|
x = (double) (new_atoms - nTarget); |
| 185 |
|
y = myRandom->getRandom(); |
| 186 |
< |
|
| 187 |
< |
if (exp(- a * x) > y) { |
| 186 |
> |
|
| 187 |
> |
if (y < exp(- a * x)) { |
| 188 |
|
MolToProcMap[i] = which_proc; |
| 189 |
|
AtomsPerProc[which_proc] += add_atoms; |
| 190 |
|
for (j = 0 ; j < add_atoms; j++ ) { |
| 202 |
|
|
| 203 |
|
// Spray out this nonsense to all other processors: |
| 204 |
|
|
| 205 |
< |
MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
| 206 |
< |
MPI_INT, 0); |
| 205 |
> |
MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
| 206 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 207 |
|
|
| 208 |
< |
MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 209 |
< |
MPI_INT, 0); |
| 208 |
> |
MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 209 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 210 |
|
|
| 211 |
< |
MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
| 212 |
< |
MPI_INT, 0); |
| 211 |
> |
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
| 212 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 213 |
|
|
| 214 |
< |
MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
| 215 |
< |
MPI_INT, 0); |
| 214 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
| 215 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 216 |
|
} else { |
| 217 |
|
|
| 218 |
|
// Listen to your marching orders from processor 0: |
| 219 |
|
|
| 220 |
< |
MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
| 221 |
< |
MPI_INT, 0); |
| 220 |
> |
MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
| 221 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 222 |
|
|
| 223 |
< |
MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 224 |
< |
MPI_INT, 0); |
| 223 |
> |
MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
| 224 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 225 |
|
|
| 226 |
< |
MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
| 227 |
< |
MPI_INT, 0); |
| 226 |
> |
MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
| 227 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 228 |
|
|
| 229 |
< |
MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
| 230 |
< |
MPI_INT, 0); |
| 229 |
> |
MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
| 230 |
> |
MPI_INT, 0, MPI_COMM_WORLD); |
| 231 |
|
|
| 232 |
|
|
| 233 |
|
} |
| 249 |
|
} |
| 250 |
|
} |
| 251 |
|
|
| 252 |
< |
std::cerr << "proc = " << mpiPlug->myNode << " atoms = " << natoms_local << "\n"; |
| 253 |
< |
|
| 254 |
< |
MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); |
| 255 |
< |
MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); |
| 252 |
> |
MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
| 253 |
> |
MPI_COMM_WORLD); |
| 254 |
> |
MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
| 255 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 256 |
|
|
| 257 |
|
if( nmol_global != entryPlug->n_mol ){ |
| 258 |
|
sprintf( painCave.errMsg, |
| 297 |
|
int isError, i; |
| 298 |
|
int *globalIndex = new int[mpiPlug->myNlocal]; |
| 299 |
|
|
| 300 |
< |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); |
| 300 |
> |
// Fortran indexing needs to be increased by 1 in order to get the 2 languages to |
| 301 |
> |
// not barf |
| 302 |
|
|
| 303 |
+ |
for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
| 304 |
+ |
|
| 305 |
|
|
| 306 |
|
isError = 0; |
| 307 |
|
setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); |