# | Line 1 | Line 1 | |
---|---|---|
1 | #ifdef IS_MPI | |
2 | < | |
3 | < | #include <cstdlib> |
4 | < | #include <cstring> |
5 | < | #include <cmath> |
2 | > | #include <iostream> |
3 | > | #include <stdlib.h> |
4 | > | #include <string.h> |
5 | > | #include <math.h> |
6 | #include <mpi.h> | |
7 | – | #include <mpi++.h> |
7 | ||
8 | #include "mpiSimulation.hpp" | |
9 | #include "simError.h" | |
10 | #include "fortranWrappers.hpp" | |
11 | #include "randomSPRNG.hpp" | |
12 | ||
14 | – | #define BASE_SEED 123456789 |
15 | – | |
13 | mpiSimulation* mpiSim; | |
14 | ||
15 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) | |
# | Line 20 | Line 17 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) | |
17 | entryPlug = the_entryPlug; | |
18 | mpiPlug = new mpiSimData; | |
19 | ||
20 | < | mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
20 | > | MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->nProcessors) ); |
21 | mpiPlug->myNode = worldRank; | |
22 | ||
23 | MolToProcMap = new int[entryPlug->n_mol]; | |
# | Line 43 | Line 40 | mpiSimulation::~mpiSimulation(){ | |
40 | ||
41 | } | |
42 | ||
43 | < | int* mpiSimulation::divideLabor( void ){ |
43 | > | void mpiSimulation::divideLabor( ){ |
44 | ||
48 | – | int* globalIndex; |
49 | – | |
45 | int nComponents; | |
46 | MoleculeStamp** compStamps; | |
47 | randomSPRNG *myRandom; | |
# | Line 60 | Line 55 | int* mpiSimulation::divideLabor( void ){ | |
55 | int old_atoms, add_atoms, new_atoms; | |
56 | ||
57 | int nTarget; | |
58 | < | int molIndex, atomIndex, compIndex, compStart; |
58 | > | int molIndex, atomIndex; |
59 | int done; | |
65 | – | int nLocal, molLocal; |
60 | int i, j, loops, which_proc, nmol_local, natoms_local; | |
61 | int nmol_global, natoms_global; | |
62 | < | int local_index, index; |
63 | < | int smallDiff, bigDiff; |
70 | < | int baseSeed = BASE_SEED; |
62 | > | int local_index; |
63 | > | int baseSeed = entryPlug->getSeed(); |
64 | ||
72 | – | int testSum; |
73 | – | |
65 | nComponents = entryPlug->nComponents; | |
66 | compStamps = entryPlug->compStamps; | |
67 | componentsNmol = entryPlug->componentsNmol; | |
68 | < | AtomsPerProc = new int[mpiPlug->numberProcessors]; |
68 | > | AtomsPerProc = new int[mpiPlug->nProcessors]; |
69 | ||
70 | mpiPlug->nAtomsGlobal = entryPlug->n_atoms; | |
71 | mpiPlug->nBondsGlobal = entryPlug->n_bonds; | |
# | Line 82 | Line 73 | int* mpiSimulation::divideLabor( void ){ | |
73 | mpiPlug->nTorsionsGlobal = entryPlug->n_torsions; | |
74 | mpiPlug->nSRIGlobal = entryPlug->n_SRI; | |
75 | mpiPlug->nMolGlobal = entryPlug->n_mol; | |
76 | + | mpiPlug->nGroupsGlobal = entryPlug->ngroup; |
77 | ||
78 | myRandom = new randomSPRNG( baseSeed ); | |
79 | ||
80 | < | a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
80 | > | a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; |
81 | ||
82 | // Initialize things that we'll send out later: | |
83 | < | for (i = 0; i < mpiPlug->numberProcessors; i++ ) { |
83 | > | for (i = 0; i < mpiPlug->nProcessors; i++ ) { |
84 | AtomsPerProc[i] = 0; | |
85 | } | |
86 | for (i = 0; i < mpiPlug->nMolGlobal; i++ ) { | |
# | Line 103 | Line 95 | int* mpiSimulation::divideLabor( void ){ | |
95 | ||
96 | if (mpiPlug->myNode == 0) { | |
97 | numerator = (double) entryPlug->n_atoms; | |
98 | < | denominator = (double) mpiPlug->numberProcessors; |
98 | > | denominator = (double) mpiPlug->nProcessors; |
99 | precast = numerator / denominator; | |
100 | nTarget = (int)( precast + 0.5 ); | |
101 | ||
# | Line 128 | Line 120 | int* mpiSimulation::divideLabor( void ){ | |
120 | ||
121 | // Pick a processor at random | |
122 | ||
123 | < | which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors); |
123 | > | which_proc = (int) (myRandom->getRandom() * mpiPlug->nProcessors); |
124 | ||
125 | // How many atoms does this processor have? | |
126 | ||
127 | old_atoms = AtomsPerProc[which_proc]; | |
136 | – | |
137 | – | // If the processor already had too many atoms, just skip this |
138 | – | // processor and try again. |
139 | – | |
140 | – | if (old_atoms >= nTarget) continue; |
141 | – | |
128 | add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); | |
129 | new_atoms = old_atoms + add_atoms; | |
144 | – | |
145 | – | // If we can add this molecule to this processor without sending |
146 | – | // it above nTarget, then go ahead and do it: |
147 | – | |
148 | – | if (new_atoms <= nTarget) { |
149 | – | MolToProcMap[i] = which_proc; |
150 | – | AtomsPerProc[which_proc] += add_atoms; |
151 | – | for (j = 0 ; j < add_atoms; j++ ) { |
152 | – | atomIndex++; |
153 | – | AtomToProcMap[atomIndex] = which_proc; |
154 | – | } |
155 | – | done = 1; |
156 | – | continue; |
157 | – | } |
130 | ||
131 | // If we've been through this loop too many times, we need | |
132 | // to just give up and assign the molecule to this processor | |
# | Line 172 | Line 144 | int* mpiSimulation::divideLabor( void ){ | |
144 | MolToProcMap[i] = which_proc; | |
145 | AtomsPerProc[which_proc] += add_atoms; | |
146 | for (j = 0 ; j < add_atoms; j++ ) { | |
147 | < | atomIndex++; |
148 | < | AtomToProcMap[atomIndex] = which_proc; |
147 | > | AtomToProcMap[atomIndex] = which_proc; |
148 | > | atomIndex++; |
149 | } | |
150 | done = 1; | |
151 | continue; | |
152 | } | |
153 | + | |
154 | + | // If we can add this molecule to this processor without sending |
155 | + | // it above nTarget, then go ahead and do it: |
156 | + | |
157 | + | if (new_atoms <= nTarget) { |
158 | + | MolToProcMap[i] = which_proc; |
159 | + | AtomsPerProc[which_proc] += add_atoms; |
160 | + | for (j = 0 ; j < add_atoms; j++ ) { |
161 | + | AtomToProcMap[atomIndex] = which_proc; |
162 | + | atomIndex++; |
163 | + | } |
164 | + | done = 1; |
165 | + | continue; |
166 | + | } |
167 | ||
182 | – | // The only situation left is where old_atoms < nTarget, but |
183 | – | // new_atoms > nTarget. We want to accept this with some |
184 | – | // probability that dies off the farther we are from nTarget |
168 | ||
169 | + | // The only situation left is when new_atoms > nTarget. We |
170 | + | // want to accept this with some probability that dies off the |
171 | + | // farther we are from nTarget |
172 | + | |
173 | // roughly: x = new_atoms - nTarget | |
174 | // Pacc(x) = exp(- a * x) | |
175 | < | // where a = 1 / (average atoms per molecule) |
175 | > | // where a = penalty / (average atoms per molecule) |
176 | ||
177 | x = (double) (new_atoms - nTarget); | |
178 | y = myRandom->getRandom(); | |
179 | < | |
180 | < | if (exp(- a * x) > y) { |
179 | > | |
180 | > | if (y < exp(- a * x)) { |
181 | MolToProcMap[i] = which_proc; | |
182 | AtomsPerProc[which_proc] += add_atoms; | |
183 | for (j = 0 ; j < add_atoms; j++ ) { | |
184 | < | atomIndex++; |
185 | < | AtomToProcMap[atomIndex] = which_proc; |
186 | < | } |
184 | > | AtomToProcMap[atomIndex] = which_proc; |
185 | > | atomIndex++; |
186 | > | } |
187 | done = 1; | |
188 | continue; | |
189 | } else { | |
# | Line 208 | Line 195 | int* mpiSimulation::divideLabor( void ){ | |
195 | ||
196 | // Spray out this nonsense to all other processors: | |
197 | ||
198 | < | MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
199 | < | MPI_INT, 0); |
198 | > | MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
199 | > | MPI_INT, 0, MPI_COMM_WORLD); |
200 | ||
201 | < | MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
202 | < | MPI_INT, 0); |
201 | > | MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
202 | > | MPI_INT, 0, MPI_COMM_WORLD); |
203 | ||
204 | < | MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
205 | < | MPI_INT, 0); |
204 | > | MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
205 | > | MPI_INT, 0, MPI_COMM_WORLD); |
206 | ||
207 | < | MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
208 | < | MPI_INT, 0); |
207 | > | MPI_Bcast(AtomsPerProc, mpiPlug->nProcessors, |
208 | > | MPI_INT, 0, MPI_COMM_WORLD); |
209 | } else { | |
210 | ||
211 | // Listen to your marching orders from processor 0: | |
212 | ||
213 | < | MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
214 | < | MPI_INT, 0); |
213 | > | MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
214 | > | MPI_INT, 0, MPI_COMM_WORLD); |
215 | ||
216 | < | MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
217 | < | MPI_INT, 0); |
216 | > | MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
217 | > | MPI_INT, 0, MPI_COMM_WORLD); |
218 | ||
219 | < | MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
220 | < | MPI_INT, 0); |
219 | > | MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
220 | > | MPI_INT, 0, MPI_COMM_WORLD); |
221 | ||
222 | < | MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
223 | < | MPI_INT, 0); |
222 | > | MPI_Bcast(AtomsPerProc, mpiPlug->nProcessors, |
223 | > | MPI_INT, 0, MPI_COMM_WORLD); |
224 | > | |
225 | > | |
226 | } | |
227 | ||
228 | ||
# | Line 253 | Line 242 | int* mpiSimulation::divideLabor( void ){ | |
242 | } | |
243 | } | |
244 | ||
245 | < | MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); |
246 | < | MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); |
245 | > | MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
246 | > | MPI_COMM_WORLD); |
247 | > | MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
248 | > | MPI_SUM, MPI_COMM_WORLD); |
249 | ||
250 | if( nmol_global != entryPlug->n_mol ){ | |
251 | sprintf( painCave.errMsg, | |
# | Line 278 | Line 269 | int* mpiSimulation::divideLabor( void ){ | |
269 | "Successfully divided the molecules among the processors.\n" ); | |
270 | MPIcheckPoint(); | |
271 | ||
272 | < | mpiPlug->myNMol = nmol_local; |
273 | < | mpiPlug->myNlocal = natoms_local; |
272 | > | mpiPlug->nMolLocal = nmol_local; |
273 | > | mpiPlug->nAtomsLocal = natoms_local; |
274 | ||
275 | < | globalIndex = new int[mpiPlug->myNlocal]; |
275 | > | globalAtomIndex.resize(mpiPlug->nAtomsLocal); |
276 | > | globalToLocalAtom.resize(mpiPlug->nAtomsGlobal); |
277 | local_index = 0; | |
278 | for (i = 0; i < mpiPlug->nAtomsGlobal; i++) { | |
279 | if (AtomToProcMap[i] == mpiPlug->myNode) { | |
280 | + | globalAtomIndex[local_index] = i; |
281 | + | |
282 | + | globalToLocalAtom[i] = local_index; |
283 | local_index++; | |
284 | < | globalIndex[local_index] = i; |
284 | > | |
285 | } | |
286 | + | else |
287 | + | globalToLocalAtom[i] = -1; |
288 | } | |
289 | < | |
290 | < | return globalIndex; |
289 | > | |
290 | > | globalMolIndex.resize(mpiPlug->nMolLocal); |
291 | > | globalToLocalMol.resize(mpiPlug->nMolGlobal); |
292 | > | |
293 | > | local_index = 0; |
294 | > | for (i = 0; i < mpiPlug->nMolGlobal; i++) { |
295 | > | if (MolToProcMap[i] == mpiPlug->myNode) { |
296 | > | globalMolIndex[local_index] = i; |
297 | > | globalToLocalMol[i] = local_index; |
298 | > | local_index++; |
299 | > | } |
300 | > | else |
301 | > | globalToLocalMol[i] = -1; |
302 | > | } |
303 | > | |
304 | } | |
305 | ||
306 | ||
307 | void mpiSimulation::mpiRefresh( void ){ | |
308 | ||
309 | int isError, i; | |
310 | < | int *globalIndex = new int[mpiPlug->myNlocal]; |
310 | > | int *globalIndex = new int[mpiPlug->nAtomsLocal]; |
311 | ||
312 | < | for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); |
312 | > | // Fortran indexing needs to be increased by 1 in order to get the 2 languages to |
313 | > | // not barf |
314 | ||
315 | + | for(i=0; i<mpiPlug->nAtomsLocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1; |
316 | + | |
317 | ||
318 | isError = 0; | |
319 | setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |