# | Line 1 | Line 1 | |
---|---|---|
1 | #ifdef IS_MPI | |
2 | < | |
3 | < | #include <cstdlib> |
4 | < | #include <cstring> |
2 | > | #include <iostream> |
3 | > | #include <stdlib.h> |
4 | > | #include <string.h> |
5 | > | #include <math.h> |
6 | #include <mpi.h> | |
6 | – | #include <mpi++.h> |
7 | ||
8 | #include "mpiSimulation.hpp" | |
9 | #include "simError.h" | |
10 | #include "fortranWrappers.hpp" | |
11 | + | #include "randomSPRNG.hpp" |
12 | ||
12 | – | |
13 | – | |
14 | – | |
13 | mpiSimulation* mpiSim; | |
14 | ||
15 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) | |
16 | { | |
17 | entryPlug = the_entryPlug; | |
18 | < | mpiPlug = new mpiSimData; |
18 | > | parallelData = new mpiSimData; |
19 | ||
20 | < | mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
21 | < | mpiPlug->myNode = worldRank; |
22 | < | |
20 | > | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors) ); |
21 | > | parallelData->myNode = worldRank; |
22 | > | |
23 | > | MolToProcMap = new int[entryPlug->n_mol]; |
24 | > | MolComponentType = new int[entryPlug->n_mol]; |
25 | > | AtomToProcMap = new int[entryPlug->n_atoms]; |
26 | > | GroupToProcMap = new int[entryPlug->ngroup]; |
27 | > | |
28 | mpiSim = this; | |
29 | wrapMeSimParallel( this ); | |
30 | } | |
# | Line 29 | Line 32 | mpiSimulation::~mpiSimulation(){ | |
32 | ||
33 | mpiSimulation::~mpiSimulation(){ | |
34 | ||
35 | < | delete mpiPlug; |
35 | > | delete[] MolToProcMap; |
36 | > | delete[] MolComponentType; |
37 | > | delete[] AtomToProcMap; |
38 | > | delete[] GroupToProcMap; |
39 | > | |
40 | > | delete parallelData; |
41 | // perhaps we should let fortran know the party is over. | |
42 | ||
43 | } | |
44 | ||
45 | + | void mpiSimulation::divideLabor( ){ |
46 | ||
38 | – | |
39 | – | int* mpiSimulation::divideLabor( void ){ |
40 | – | |
41 | – | int* globalIndex; |
42 | – | |
47 | int nComponents; | |
48 | MoleculeStamp** compStamps; | |
49 | + | randomSPRNG *myRandom; |
50 | int* componentsNmol; | |
51 | + | int* AtomsPerProc; |
52 | + | int* GroupsPerProc; |
53 | ||
54 | double numerator; | |
55 | double denominator; | |
56 | double precast; | |
57 | + | double x, y, a; |
58 | + | int old_atoms, add_atoms, new_atoms; |
59 | + | int old_groups, add_groups, new_groups; |
60 | ||
61 | int nTarget; | |
62 | < | int molIndex, atomIndex, compIndex, compStart; |
62 | > | int molIndex, atomIndex, groupIndex; |
63 | int done; | |
64 | < | int nLocal, molLocal; |
65 | < | int i, index; |
66 | < | int smallDiff, bigDiff; |
64 | > | int i, j, loops, which_proc; |
65 | > | int nmol_global, nmol_local; |
66 | > | int ngroups_global, ngroups_local; |
67 | > | int natoms_global, natoms_local; |
68 | > | int ncutoff_groups, nAtomsInGroups; |
69 | > | int local_index; |
70 | > | int baseSeed = entryPlug->getSeed(); |
71 | > | CutoffGroupStamp* cg; |
72 | ||
58 | – | int testSum; |
59 | – | |
73 | nComponents = entryPlug->nComponents; | |
74 | compStamps = entryPlug->compStamps; | |
75 | componentsNmol = entryPlug->componentsNmol; | |
76 | + | AtomsPerProc = new int[parallelData->nProcessors]; |
77 | + | GroupsPerProc = new int[parallelData->nProcessors]; |
78 | + | |
79 | + | parallelData->nAtomsGlobal = entryPlug->n_atoms; |
80 | + | parallelData->nBondsGlobal = entryPlug->n_bonds; |
81 | + | parallelData->nBendsGlobal = entryPlug->n_bends; |
82 | + | parallelData->nTorsionsGlobal = entryPlug->n_torsions; |
83 | + | parallelData->nSRIGlobal = entryPlug->n_SRI; |
84 | + | parallelData->nGroupsGlobal = entryPlug->ngroup; |
85 | + | parallelData->nMolGlobal = entryPlug->n_mol; |
86 | ||
87 | < | mpiPlug->nAtomsGlobal = entryPlug->n_atoms; |
65 | < | mpiPlug->nBondsGlobal = entryPlug->n_bonds; |
66 | < | mpiPlug->nBendsGlobal = entryPlug->n_bends; |
67 | < | mpiPlug->nTorsionsGlobal = entryPlug->n_torsions; |
68 | < | mpiPlug->nSRIGlobal = entryPlug->n_SRI; |
69 | < | mpiPlug->nMolGlobal = entryPlug->n_mol; |
87 | > | myRandom = new randomSPRNG( baseSeed ); |
88 | ||
89 | + | a = 3.0 * (double)parallelData->nMolGlobal / (double)parallelData->nAtomsGlobal; |
90 | ||
91 | + | // Initialize things that we'll send out later: |
92 | + | for (i = 0; i < parallelData->nProcessors; i++ ) { |
93 | + | AtomsPerProc[i] = 0; |
94 | + | GroupsPerProc[i] = 0; |
95 | + | } |
96 | + | for (i = 0; i < parallelData->nMolGlobal; i++ ) { |
97 | + | // default to an error condition: |
98 | + | MolToProcMap[i] = -1; |
99 | + | MolComponentType[i] = -1; |
100 | + | } |
101 | + | for (i = 0; i < parallelData->nAtomsGlobal; i++ ) { |
102 | + | // default to an error condition: |
103 | + | AtomToProcMap[i] = -1; |
104 | + | } |
105 | + | for (i = 0; i < parallelData->nGroupsGlobal; i++ ) { |
106 | + | // default to an error condition: |
107 | + | GroupToProcMap[i] = -1; |
108 | + | } |
109 | + | |
110 | + | if (parallelData->myNode == 0) { |
111 | + | numerator = (double) entryPlug->n_atoms; |
112 | + | denominator = (double) parallelData->nProcessors; |
113 | + | precast = numerator / denominator; |
114 | + | nTarget = (int)( precast + 0.5 ); |
115 | ||
116 | + | // Build the array of molecule component types first |
117 | + | molIndex = 0; |
118 | + | for (i=0; i < nComponents; i++) { |
119 | + | for (j=0; j < componentsNmol[i]; j++) { |
120 | + | MolComponentType[molIndex] = i; |
121 | + | molIndex++; |
122 | + | } |
123 | + | } |
124 | ||
125 | + | atomIndex = 0; |
126 | + | groupIndex = 0; |
127 | ||
128 | + | for (i = 0; i < molIndex; i++ ) { |
129 | ||
130 | + | done = 0; |
131 | + | loops = 0; |
132 | ||
133 | + | while( !done ){ |
134 | + | loops++; |
135 | + | |
136 | + | // Pick a processor at random |
137 | ||
138 | + | which_proc = (int) (myRandom->getRandom() * parallelData->nProcessors); |
139 | ||
140 | + | // How many atoms does this processor have? |
141 | + | |
142 | + | old_atoms = AtomsPerProc[which_proc]; |
143 | + | add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
144 | + | new_atoms = old_atoms + add_atoms; |
145 | ||
146 | + | old_groups = GroupsPerProc[which_proc]; |
147 | + | ncutoff_groups = compStamps[MolComponentType[i]]->getNCutoffGroups(); |
148 | + | nAtomsInGroups = 0; |
149 | + | for (j = 0; j < ncutoff_groups; j++) { |
150 | + | cg = compStamps[MolComponentType[i]]->getCutoffGroup(j); |
151 | + | nAtomsInGroups += cg->getNMembers(); |
152 | + | } |
153 | + | add_groups = add_atoms - nAtomsInGroups + ncutoff_groups; |
154 | + | new_groups = old_groups + add_groups; |
155 | ||
156 | < | |
157 | < | numerator = (double) entryPlug->n_atoms; |
158 | < | denominator = (double) mpiPlug->numberProcessors; |
159 | < | precast = numerator / denominator; |
160 | < | nTarget = (int)( precast + 0.5 ); |
161 | < | |
162 | < | molIndex = 0; |
163 | < | atomIndex = 0; |
164 | < | compIndex = 0; |
165 | < | compStart = 0; |
166 | < | for( i=0; i<(mpiPlug->numberProcessors-1); i++){ |
156 | > | // If we've been through this loop too many times, we need |
157 | > | // to just give up and assign the molecule to this processor |
158 | > | // and be done with it. |
159 | > | |
160 | > | if (loops > 100) { |
161 | > | sprintf( painCave.errMsg, |
162 | > | "I've tried 100 times to assign molecule %d to a " |
163 | > | " processor, but can't find a good spot.\n" |
164 | > | "I'm assigning it at random to processor %d.\n", |
165 | > | i, which_proc); |
166 | > | painCave.isFatal = 0; |
167 | > | simError(); |
168 | > | |
169 | > | MolToProcMap[i] = which_proc; |
170 | > | AtomsPerProc[which_proc] += add_atoms; |
171 | > | for (j = 0 ; j < add_atoms; j++ ) { |
172 | > | AtomToProcMap[atomIndex] = which_proc; |
173 | > | atomIndex++; |
174 | > | } |
175 | > | GroupsPerProc[which_proc] += add_groups; |
176 | > | for (j=0; j < add_groups; j++) { |
177 | > | GroupToProcMap[groupIndex] = which_proc; |
178 | > | groupIndex++; |
179 | > | } |
180 | > | done = 1; |
181 | > | continue; |
182 | > | } |
183 | ||
184 | < | done = 0; |
185 | < | nLocal = 0; |
95 | < | molLocal = 0; |
96 | < | |
97 | < | if( i == mpiPlug->myNode ){ |
98 | < | mpiPlug->myMolStart = molIndex; |
99 | < | mpiPlug->myAtomStart = atomIndex; |
100 | < | } |
184 | > | // If we can add this molecule to this processor without sending |
185 | > | // it above nTarget, then go ahead and do it: |
186 | ||
187 | < | while( !done ){ |
188 | < | |
189 | < | if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
190 | < | compStart = molIndex; |
191 | < | compIndex++; |
192 | < | continue; |
193 | < | } |
187 | > | if (new_atoms <= nTarget) { |
188 | > | MolToProcMap[i] = which_proc; |
189 | > | AtomsPerProc[which_proc] += add_atoms; |
190 | > | for (j = 0 ; j < add_atoms; j++ ) { |
191 | > | AtomToProcMap[atomIndex] = which_proc; |
192 | > | atomIndex++; |
193 | > | } |
194 | > | GroupsPerProc[which_proc] += add_groups; |
195 | > | for (j=0; j < add_groups; j++) { |
196 | > | GroupToProcMap[groupIndex] = which_proc; |
197 | > | groupIndex++; |
198 | > | } |
199 | > | done = 1; |
200 | > | continue; |
201 | > | } |
202 | ||
203 | < | nLocal += compStamps[compIndex]->getNAtoms(); |
204 | < | atomIndex += compStamps[compIndex]->getNAtoms(); |
205 | < | molIndex++; |
206 | < | molLocal++; |
203 | > | |
204 | > | // The only situation left is when new_atoms > nTarget. We |
205 | > | // want to accept this with some probability that dies off the |
206 | > | // farther we are from nTarget |
207 | > | |
208 | > | // roughly: x = new_atoms - nTarget |
209 | > | // Pacc(x) = exp(- a * x) |
210 | > | // where a = penalty / (average atoms per molecule) |
211 | > | |
212 | > | x = (double) (new_atoms - nTarget); |
213 | > | y = myRandom->getRandom(); |
214 | ||
215 | < | if ( nLocal == nTarget ) done = 1; |
216 | < | |
217 | < | else if( nLocal < nTarget ){ |
218 | < | smallDiff = nTarget - nLocal; |
219 | < | } |
220 | < | else if( nLocal > nTarget ){ |
221 | < | bigDiff = nLocal - nTarget; |
222 | < | |
223 | < | if( bigDiff < smallDiff ) done = 1; |
224 | < | else{ |
225 | < | molIndex--; |
226 | < | molLocal--; |
227 | < | atomIndex -= compStamps[compIndex]->getNAtoms(); |
228 | < | nLocal -= compStamps[compIndex]->getNAtoms(); |
229 | < | done = 1; |
230 | < | } |
215 | > | if (y < exp(- a * x)) { |
216 | > | MolToProcMap[i] = which_proc; |
217 | > | AtomsPerProc[which_proc] += add_atoms; |
218 | > | for (j = 0 ; j < add_atoms; j++ ) { |
219 | > | AtomToProcMap[atomIndex] = which_proc; |
220 | > | atomIndex++; |
221 | > | } |
222 | > | GroupsPerProc[which_proc] += add_groups; |
223 | > | for (j=0; j < add_groups; j++) { |
224 | > | GroupToProcMap[groupIndex] = which_proc; |
225 | > | groupIndex++; |
226 | > | } |
227 | > | done = 1; |
228 | > | continue; |
229 | > | } else { |
230 | > | continue; |
231 | > | } |
232 | > | |
233 | } | |
234 | } | |
235 | + | |
236 | + | |
237 | + | // Spray out this nonsense to all other processors: |
238 | + | |
239 | + | MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
240 | + | MPI_INT, 0, MPI_COMM_WORLD); |
241 | + | |
242 | + | MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal, |
243 | + | MPI_INT, 0, MPI_COMM_WORLD); |
244 | + | |
245 | + | MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal, |
246 | + | MPI_INT, 0, MPI_COMM_WORLD); |
247 | + | |
248 | + | MPI_Bcast(MolComponentType, parallelData->nMolGlobal, |
249 | + | MPI_INT, 0, MPI_COMM_WORLD); |
250 | + | |
251 | + | MPI_Bcast(AtomsPerProc, parallelData->nProcessors, |
252 | + | MPI_INT, 0, MPI_COMM_WORLD); |
253 | + | |
254 | + | MPI_Bcast(GroupsPerProc, parallelData->nProcessors, |
255 | + | MPI_INT, 0, MPI_COMM_WORLD); |
256 | + | } else { |
257 | + | |
258 | + | // Listen to your marching orders from processor 0: |
259 | ||
260 | < | if( i == mpiPlug->myNode ){ |
261 | < | mpiPlug->myMolEnd = (molIndex - 1); |
136 | < | mpiPlug->myAtomEnd = (atomIndex - 1); |
137 | < | mpiPlug->myNlocal = nLocal; |
138 | < | mpiPlug->myMol = molLocal; |
139 | < | } |
260 | > | MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
261 | > | MPI_INT, 0, MPI_COMM_WORLD); |
262 | ||
263 | < | numerator = (double)( entryPlug->n_atoms - atomIndex ); |
264 | < | denominator = (double)( mpiPlug->numberProcessors - (i+1) ); |
265 | < | precast = numerator / denominator; |
266 | < | nTarget = (int)( precast + 0.5 ); |
263 | > | MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal, |
264 | > | MPI_INT, 0, MPI_COMM_WORLD); |
265 | > | |
266 | > | MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal, |
267 | > | MPI_INT, 0, MPI_COMM_WORLD); |
268 | > | |
269 | > | MPI_Bcast(MolComponentType, parallelData->nMolGlobal, |
270 | > | MPI_INT, 0, MPI_COMM_WORLD); |
271 | > | |
272 | > | MPI_Bcast(AtomsPerProc, parallelData->nProcessors, |
273 | > | MPI_INT, 0, MPI_COMM_WORLD); |
274 | > | |
275 | > | MPI_Bcast(GroupsPerProc, parallelData->nProcessors, |
276 | > | MPI_INT, 0, MPI_COMM_WORLD); |
277 | > | |
278 | > | |
279 | } | |
146 | – | |
147 | – | if( mpiPlug->myNode == mpiPlug->numberProcessors-1 ){ |
148 | – | mpiPlug->myMolStart = molIndex; |
149 | – | mpiPlug->myAtomStart = atomIndex; |
280 | ||
281 | < | nLocal = 0; |
152 | < | molLocal = 0; |
153 | < | while( compIndex < nComponents ){ |
154 | < | |
155 | < | if( (molIndex-compStart) >= componentsNmol[compIndex] ){ |
156 | < | compStart = molIndex; |
157 | < | compIndex++; |
158 | < | continue; |
159 | < | } |
281 | > | // Let's all check for sanity: |
282 | ||
283 | < | nLocal += compStamps[compIndex]->getNAtoms(); |
284 | < | atomIndex += compStamps[compIndex]->getNAtoms(); |
285 | < | molIndex++; |
286 | < | molLocal++; |
287 | < | } |
166 | < | |
167 | < | mpiPlug->myMolEnd = (molIndex - 1); |
168 | < | mpiPlug->myAtomEnd = (atomIndex - 1); |
169 | < | mpiPlug->myNlocal = nLocal; |
170 | < | mpiPlug->myMol = molLocal; |
283 | > | nmol_local = 0; |
284 | > | for (i = 0 ; i < parallelData->nMolGlobal; i++ ) { |
285 | > | if (MolToProcMap[i] == parallelData->myNode) { |
286 | > | nmol_local++; |
287 | > | } |
288 | } | |
289 | ||
290 | + | natoms_local = 0; |
291 | + | for (i = 0; i < parallelData->nAtomsGlobal; i++) { |
292 | + | if (AtomToProcMap[i] == parallelData->myNode) { |
293 | + | natoms_local++; |
294 | + | } |
295 | + | } |
296 | ||
297 | < | MPI_Allreduce( &nLocal, &testSum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD ); |
298 | < | |
299 | < | if( mpiPlug->myNode == 0 ){ |
300 | < | if( testSum != entryPlug->n_atoms ){ |
178 | < | sprintf( painCave.errMsg, |
179 | < | "The summ of all nLocals, %d, did not equal the total number of atoms, %d.\n", |
180 | < | testSum, entryPlug->n_atoms ); |
181 | < | painCave.isFatal = 1; |
182 | < | simError(); |
297 | > | ngroups_local = 0; |
298 | > | for (i = 0; i < parallelData->nGroupsGlobal; i++) { |
299 | > | if (GroupToProcMap[i] == parallelData->myNode) { |
300 | > | ngroups_local++; |
301 | } | |
302 | } | |
303 | ||
304 | + | MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
305 | + | MPI_COMM_WORLD); |
306 | + | |
307 | + | MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
308 | + | MPI_SUM, MPI_COMM_WORLD); |
309 | + | |
310 | + | MPI_Allreduce(&ngroups_local,&ngroups_global,1,MPI_INT, |
311 | + | MPI_SUM, MPI_COMM_WORLD); |
312 | + | |
313 | + | if( nmol_global != entryPlug->n_mol ){ |
314 | + | sprintf( painCave.errMsg, |
315 | + | "The sum of all nmol_local, %d, did not equal the " |
316 | + | "total number of molecules, %d.\n", |
317 | + | nmol_global, entryPlug->n_mol ); |
318 | + | painCave.isFatal = 1; |
319 | + | simError(); |
320 | + | } |
321 | + | |
322 | + | if( natoms_global != entryPlug->n_atoms ){ |
323 | + | sprintf( painCave.errMsg, |
324 | + | "The sum of all natoms_local, %d, did not equal the " |
325 | + | "total number of atoms, %d.\n", |
326 | + | natoms_global, entryPlug->n_atoms ); |
327 | + | painCave.isFatal = 1; |
328 | + | simError(); |
329 | + | } |
330 | + | |
331 | + | if( ngroups_global != entryPlug->ngroup ){ |
332 | + | sprintf( painCave.errMsg, |
333 | + | "The sum of all ngroups_local, %d, did not equal the " |
334 | + | "total number of cutoffGroups, %d.\n", |
335 | + | ngroups_global, entryPlug->ngroup ); |
336 | + | painCave.isFatal = 1; |
337 | + | simError(); |
338 | + | } |
339 | + | |
340 | sprintf( checkPointMsg, | |
341 | "Successfully divided the molecules among the processors.\n" ); | |
342 | MPIcheckPoint(); | |
343 | ||
344 | < | // lets create the identity array |
344 | > | parallelData->nMolLocal = nmol_local; |
345 | > | parallelData->nAtomsLocal = natoms_local; |
346 | > | parallelData->nGroupsLocal = ngroups_local; |
347 | ||
348 | < | globalIndex = new int[mpiPlug->myNlocal]; |
349 | < | index = mpiPlug->myAtomStart; |
350 | < | for( i=0; i<mpiPlug->myNlocal; i++){ |
351 | < | globalIndex[i] = index; |
352 | < | index++; |
348 | > | globalAtomIndex.resize(parallelData->nAtomsLocal); |
349 | > | globalToLocalAtom.resize(parallelData->nAtomsGlobal); |
350 | > | local_index = 0; |
351 | > | for (i = 0; i < parallelData->nAtomsGlobal; i++) { |
352 | > | if (AtomToProcMap[i] == parallelData->myNode) { |
353 | > | globalAtomIndex[local_index] = i; |
354 | > | |
355 | > | globalToLocalAtom[i] = local_index; |
356 | > | local_index++; |
357 | > | |
358 | > | } |
359 | > | else |
360 | > | globalToLocalAtom[i] = -1; |
361 | } | |
362 | ||
363 | < | return globalIndex; |
363 | > | globalGroupIndex.resize(parallelData->nGroupsLocal); |
364 | > | globalToLocalGroup.resize(parallelData->nGroupsGlobal); |
365 | > | local_index = 0; |
366 | > | for (i = 0; i < parallelData->nGroupsGlobal; i++) { |
367 | > | if (GroupToProcMap[i] == parallelData->myNode) { |
368 | > | globalGroupIndex[local_index] = i; |
369 | > | |
370 | > | globalToLocalGroup[i] = local_index; |
371 | > | local_index++; |
372 | > | |
373 | > | } |
374 | > | else |
375 | > | globalToLocalGroup[i] = -1; |
376 | > | } |
377 | > | |
378 | > | globalMolIndex.resize(parallelData->nMolLocal); |
379 | > | globalToLocalMol.resize(parallelData->nMolGlobal); |
380 | > | local_index = 0; |
381 | > | for (i = 0; i < parallelData->nMolGlobal; i++) { |
382 | > | if (MolToProcMap[i] == parallelData->myNode) { |
383 | > | globalMolIndex[local_index] = i; |
384 | > | globalToLocalMol[i] = local_index; |
385 | > | local_index++; |
386 | > | } |
387 | > | else |
388 | > | globalToLocalMol[i] = -1; |
389 | > | } |
390 | > | |
391 | } | |
392 | ||
393 | ||
394 | void mpiSimulation::mpiRefresh( void ){ | |
395 | ||
396 | int isError, i; | |
397 | < | int *globalIndex = new int[mpiPlug->myNlocal]; |
397 | > | int *localToGlobalAtomIndex = new int[parallelData->nAtomsLocal]; |
398 | > | int *localToGlobalGroupIndex = new int[parallelData->nGroupsLocal]; |
399 | ||
400 | < | for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex(); |
400 | > | // Fortran indexing needs to be increased by 1 in order to get the 2 |
401 | > | // languages to not barf |
402 | ||
403 | + | for(i = 0; i < parallelData->nAtomsLocal; i++) |
404 | + | localToGlobalAtomIndex[i] = globalAtomIndex[i] + 1; |
405 | + | |
406 | + | for(i = 0; i < parallelData->nGroupsLocal; i++) |
407 | + | localToGlobalGroupIndex[i] = globalGroupIndex[i] + 1; |
408 | ||
409 | isError = 0; | |
410 | < | setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError ); |
410 | > | |
411 | > | setFsimParallel( parallelData, |
412 | > | &(parallelData->nAtomsLocal), localToGlobalAtomIndex, |
413 | > | &(parallelData->nGroupsLocal), localToGlobalGroupIndex, |
414 | > | &isError ); |
415 | > | |
416 | if( isError ){ | |
417 | ||
418 | sprintf( painCave.errMsg, | |
# | Line 218 | Line 421 | void mpiSimulation::mpiRefresh( void ){ | |
421 | simError(); | |
422 | } | |
423 | ||
424 | < | delete[] globalIndex; |
424 | > | delete[] localToGlobalGroupIndex; |
425 | > | delete[] localToGlobalAtomIndex; |
426 | ||
427 | + | |
428 | sprintf( checkPointMsg, | |
429 | " mpiRefresh successful.\n" ); | |
430 | MPIcheckPoint(); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |