# | Line 4 | Line 4 | |
---|---|---|
4 | #include <cstring> | |
5 | #include <cmath> | |
6 | #include <mpi.h> | |
7 | – | #include <mpi++.h> |
7 | ||
8 | #include "mpiSimulation.hpp" | |
9 | #include "simError.h" | |
10 | #include "fortranWrappers.hpp" | |
11 | #include "randomSPRNG.hpp" | |
12 | ||
14 | – | #define BASE_SEED 123456789 |
15 | – | |
13 | mpiSimulation* mpiSim; | |
14 | ||
15 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) | |
# | Line 20 | Line 17 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) | |
17 | entryPlug = the_entryPlug; | |
18 | mpiPlug = new mpiSimData; | |
19 | ||
20 | < | mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size(); |
20 | > | MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->numberProcessors) ); |
21 | mpiPlug->myNode = worldRank; | |
22 | ||
23 | MolToProcMap = new int[entryPlug->n_mol]; | |
# | Line 67 | Line 64 | int* mpiSimulation::divideLabor( void ){ | |
64 | int nmol_global, natoms_global; | |
65 | int local_index, index; | |
66 | int smallDiff, bigDiff; | |
67 | < | int baseSeed = BASE_SEED; |
67 | > | int baseSeed = entryPlug->getSeed(); |
68 | ||
69 | int testSum; | |
70 | ||
# | Line 83 | Line 80 | int* mpiSimulation::divideLabor( void ){ | |
80 | mpiPlug->nSRIGlobal = entryPlug->n_SRI; | |
81 | mpiPlug->nMolGlobal = entryPlug->n_mol; | |
82 | ||
83 | + | |
84 | myRandom = new randomSPRNG( baseSeed ); | |
85 | ||
86 | a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; | |
# | Line 203 | Line 201 | int* mpiSimulation::divideLabor( void ){ | |
201 | ||
202 | // Spray out this nonsense to all other processors: | |
203 | ||
204 | < | MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
205 | < | MPI_INT, 0); |
204 | > | MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
205 | > | MPI_INT, 0, MPI_COMM_WORLD); |
206 | ||
207 | < | MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
208 | < | MPI_INT, 0); |
207 | > | MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
208 | > | MPI_INT, 0, MPI_COMM_WORLD); |
209 | ||
210 | < | MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
211 | < | MPI_INT, 0); |
210 | > | MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
211 | > | MPI_INT, 0, MPI_COMM_WORLD); |
212 | ||
213 | < | MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
214 | < | MPI_INT, 0); |
213 | > | MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
214 | > | MPI_INT, 0, MPI_COMM_WORLD); |
215 | } else { | |
216 | ||
217 | // Listen to your marching orders from processor 0: | |
218 | ||
219 | < | MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
220 | < | MPI_INT, 0); |
219 | > | MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal, |
220 | > | MPI_INT, 0, MPI_COMM_WORLD); |
221 | ||
222 | < | MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
223 | < | MPI_INT, 0); |
222 | > | MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal, |
223 | > | MPI_INT, 0, MPI_COMM_WORLD); |
224 | ||
225 | < | MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal, |
226 | < | MPI_INT, 0); |
225 | > | MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal, |
226 | > | MPI_INT, 0, MPI_COMM_WORLD); |
227 | ||
228 | < | MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
229 | < | MPI_INT, 0); |
228 | > | MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors, |
229 | > | MPI_INT, 0, MPI_COMM_WORLD); |
230 | ||
231 | ||
232 | } | |
# | Line 250 | Line 248 | int* mpiSimulation::divideLabor( void ){ | |
248 | } | |
249 | } | |
250 | ||
251 | < | MPI::COMM_WORLD.Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM); |
252 | < | MPI::COMM_WORLD.Allreduce(&natoms_local,&natoms_global,1,MPI_INT,MPI_SUM); |
251 | > | MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
252 | > | MPI_COMM_WORLD); |
253 | > | MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
254 | > | MPI_SUM, MPI_COMM_WORLD); |
255 | ||
256 | if( nmol_global != entryPlug->n_mol ){ | |
257 | sprintf( painCave.errMsg, |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |