ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/mpiSimulation.cpp
(Generate patch)

Comparing:
branches/mmeineke/OOPSE/libmdtools/mpiSimulation.cpp (file contents), Revision 377 by mmeineke, Fri Mar 21 17:42:12 2003 UTC vs.
trunk/OOPSE/libmdtools/mpiSimulation.cpp (file contents), Revision 726 by tim, Tue Aug 26 20:37:30 2003 UTC

# Line 1 | Line 1
1   #ifdef IS_MPI
2 <
2 > #include <iostream>
3   #include <cstdlib>
4   #include <cstring>
5 + #include <cmath>
6   #include <mpi.h>
6 #include <mpi++.h>
7  
8   #include "mpiSimulation.hpp"
9   #include "simError.h"
10   #include "fortranWrappers.hpp"
11 + #include "randomSPRNG.hpp"
12  
12
13
14
13   mpiSimulation* mpiSim;
14  
15   mpiSimulation::mpiSimulation(SimInfo* the_entryPlug)
# Line 19 | Line 17 | mpiSimulation::mpiSimulation(SimInfo* the_entryPlug)
17    entryPlug = the_entryPlug;
18    mpiPlug = new mpiSimData;
19    
20 <  mpiPlug->numberProcessors = MPI::COMM_WORLD.Get_size();
20 >  MPI_Comm_size(MPI_COMM_WORLD, &(mpiPlug->numberProcessors) );
21    mpiPlug->myNode = worldRank;
22 <  
22 >
23 >  MolToProcMap = new int[entryPlug->n_mol];
24 >  MolComponentType = new int[entryPlug->n_mol];
25 >  AtomToProcMap = new int[entryPlug->n_atoms];
26 >
27    mpiSim = this;
28    wrapMeSimParallel( this );
29   }
# Line 29 | Line 31 | mpiSimulation::~mpiSimulation(){
31  
32   mpiSimulation::~mpiSimulation(){
33    
34 +  delete[] MolToProcMap;
35 +  delete[] MolComponentType;
36 +  delete[] AtomToProcMap;
37 +
38    delete mpiPlug;
39    // perhaps we should let fortran know the party is over.
40    
41   }
42  
37
38
43   int* mpiSimulation::divideLabor( void ){
44  
45    int* globalIndex;
46  
47    int nComponents;
48    MoleculeStamp** compStamps;
49 +  randomSPRNG *myRandom;
50    int* componentsNmol;
51 +  int* AtomsPerProc;
52  
53    double numerator;
54    double denominator;
55    double precast;
56 +  double x, y, a;
57 +  int old_atoms, add_atoms, new_atoms;
58  
59    int nTarget;
60    int molIndex, atomIndex, compIndex, compStart;
61    int done;
62    int nLocal, molLocal;
63 <  int i, index;
63 >  int i, j, loops, which_proc, nmol_local, natoms_local;
64 >  int nmol_global, natoms_global;
65 >  int local_index, index;
66    int smallDiff, bigDiff;
67 +  int baseSeed = entryPlug->getSeed();
68  
69    int testSum;
70  
71    nComponents = entryPlug->nComponents;
72    compStamps = entryPlug->compStamps;
73    componentsNmol = entryPlug->componentsNmol;
74 <
74 >  AtomsPerProc = new int[mpiPlug->numberProcessors];
75 >  
76    mpiPlug->nAtomsGlobal = entryPlug->n_atoms;
77    mpiPlug->nBondsGlobal = entryPlug->n_bonds;
78    mpiPlug->nBendsGlobal = entryPlug->n_bends;
# Line 68 | Line 80 | int* mpiSimulation::divideLabor( void ){
80    mpiPlug->nSRIGlobal = entryPlug->n_SRI;
81    mpiPlug->nMolGlobal = entryPlug->n_mol;
82  
71  numerator = (double) entryPlug->n_atoms;
72  denominator = (double) mpiPlug->numberProcessors;
73  precast = numerator / denominator;
74  nTarget = (int)( precast + 0.5 );
83    
84 <  molIndex = 0;
85 <  atomIndex = 0;
86 <  compIndex = 0;
87 <  compStart = 0;
88 <  for( i=0; i<(mpiPlug->numberProcessors-1); i++){
84 >  myRandom = new randomSPRNG( baseSeed );
85 >
86 >  a = 3.0 * (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal;
87 >
88 >  // Initialize things that we'll send out later:
89 >  for (i = 0; i < mpiPlug->numberProcessors; i++ ) {
90 >    AtomsPerProc[i] = 0;
91 >  }
92 >  for (i = 0; i < mpiPlug->nMolGlobal; i++ ) {
93 >    // default to an error condition:
94 >    MolToProcMap[i] = -1;
95 >    MolComponentType[i] = -1;
96 >  }
97 >  for (i = 0; i < mpiPlug->nAtomsGlobal; i++ ) {
98 >    // default to an error condition:
99 >    AtomToProcMap[i] = -1;
100 >  }
101      
102 <    done = 0;
103 <    nLocal = 0;
104 <    molLocal = 0;
102 >  if (mpiPlug->myNode == 0) {
103 >    numerator = (double) entryPlug->n_atoms;
104 >    denominator = (double) mpiPlug->numberProcessors;
105 >    precast = numerator / denominator;
106 >    nTarget = (int)( precast + 0.5 );
107  
108 <    if( i == mpiPlug->myNode ){
109 <      mpiPlug->myMolStart = molIndex;
110 <      mpiPlug->myAtomStart = atomIndex;
108 >    // Build the array of molecule component types first
109 >    molIndex = 0;
110 >    for (i=0; i < nComponents; i++) {
111 >      for (j=0; j < componentsNmol[i]; j++) {        
112 >        MolComponentType[molIndex] = i;
113 >        molIndex++;
114 >      }
115      }
116 +
117 +    atomIndex = 0;
118 +
119 +    for (i = 0; i < molIndex; i++ ) {
120 +
121 +      done = 0;
122 +      loops = 0;
123 +
124 +      while( !done ){
125 +        loops++;
126 +        
127 +        // Pick a processor at random
128 +
129 +        which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors);
130 +
131 +        // How many atoms does this processor have?
132 +        
133 +        old_atoms = AtomsPerProc[which_proc];
134 +        add_atoms = compStamps[MolComponentType[i]]->getNAtoms();
135 +        new_atoms = old_atoms + add_atoms;
136 +
137 +        // If we've been through this loop too many times, we need
138 +        // to just give up and assign the molecule to this processor
139 +        // and be done with it.
140 +        
141 +        if (loops > 100) {          
142 +          sprintf( painCave.errMsg,
143 +                   "I've tried 100 times to assign molecule %d to a "
144 +                   " processor, but can't find a good spot.\n"  
145 +                   "I'm assigning it at random to processor %d.\n",
146 +                   i, which_proc);
147 +          painCave.isFatal = 0;
148 +          simError();
149 +          
150 +          MolToProcMap[i] = which_proc;
151 +          AtomsPerProc[which_proc] += add_atoms;
152 +          for (j = 0 ; j < add_atoms; j++ ) {
153 +            AtomToProcMap[atomIndex] = which_proc;
154 +            atomIndex++;
155 +          }
156 +          done = 1;
157 +          continue;
158 +        }
159      
160 <    while( !done ){
161 <      
162 <      if( (molIndex-compStart) >= componentsNmol[compIndex] ){
163 <        compStart = molIndex;
164 <        compIndex++;
165 <        continue;
166 <      }
160 >        // If we can add this molecule to this processor without sending
161 >        // it above nTarget, then go ahead and do it:
162 >    
163 >        if (new_atoms <= nTarget) {
164 >          MolToProcMap[i] = which_proc;
165 >          AtomsPerProc[which_proc] += add_atoms;
166 >          for (j = 0 ; j < add_atoms; j++ ) {
167 >            AtomToProcMap[atomIndex] = which_proc;
168 >            atomIndex++;
169 >          }
170 >          done = 1;
171 >          continue;
172 >        }
173  
174 <      nLocal += compStamps[compIndex]->getNAtoms();
175 <      atomIndex += compStamps[compIndex]->getNAtoms();
176 <      molIndex++;
177 <      molLocal++;
174 >
175 >        // The only situation left is when new_atoms > nTarget.  We
176 >        // want to accept this with some probability that dies off the
177 >        // farther we are from nTarget
178 >
179 >        // roughly:  x = new_atoms - nTarget
180 >        //           Pacc(x) = exp(- a * x)
181 >        // where a = penalty / (average atoms per molecule)
182 >
183 >        x = (double) (new_atoms - nTarget);
184 >        y = myRandom->getRandom();
185        
186 <      if ( nLocal == nTarget ) done = 1;
187 <      
188 <      else if( nLocal < nTarget ){
189 <        smallDiff = nTarget - nLocal;
190 <      }
191 <      else if( nLocal > nTarget ){
192 <        bigDiff = nLocal - nTarget;
193 <        
194 <        if( bigDiff < smallDiff ) done = 1;
195 <        else{
196 <          molIndex--;
197 <          molLocal--;
198 <          atomIndex -= compStamps[compIndex]->getNAtoms();
117 <          nLocal -= compStamps[compIndex]->getNAtoms();
118 <          done = 1;
119 <        }
186 >        if (y < exp(- a * x)) {
187 >          MolToProcMap[i] = which_proc;
188 >          AtomsPerProc[which_proc] += add_atoms;
189 >          for (j = 0 ; j < add_atoms; j++ ) {
190 >            AtomToProcMap[atomIndex] = which_proc;
191 >            atomIndex++;
192 >           }
193 >          done = 1;
194 >          continue;
195 >        } else {
196 >          continue;
197 >        }      
198 >        
199        }
200      }
201 +
202 +    // Spray out this nonsense to all other processors:
203 +
204 +    MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal,
205 +              MPI_INT, 0, MPI_COMM_WORLD);
206 +
207 +    MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,
208 +              MPI_INT, 0, MPI_COMM_WORLD);
209 +
210 +    MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal,
211 +              MPI_INT, 0, MPI_COMM_WORLD);
212 +
213 +    MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors,
214 +              MPI_INT, 0, MPI_COMM_WORLD);    
215 +  } else {
216 +
217 +    // Listen to your marching orders from processor 0:
218      
219 <    if( i == mpiPlug->myNode ){
220 <      mpiPlug->myMolEnd = (molIndex - 1);
125 <      mpiPlug->myAtomEnd = (atomIndex - 1);
126 <      mpiPlug->myNlocal = nLocal;
127 <      mpiPlug->myMol = molLocal;
128 <    }
219 >    MPI_Bcast(MolToProcMap, mpiPlug->nMolGlobal,
220 >              MPI_INT, 0, MPI_COMM_WORLD);
221      
222 <    numerator = (double)( entryPlug->n_atoms - atomIndex );
223 <    denominator = (double)( mpiPlug->numberProcessors - (i+1) );
224 <    precast = numerator / denominator;
225 <    nTarget = (int)( precast + 0.5 );
222 >    MPI_Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,
223 >              MPI_INT, 0, MPI_COMM_WORLD);
224 >
225 >    MPI_Bcast(MolComponentType, mpiPlug->nMolGlobal,
226 >              MPI_INT, 0, MPI_COMM_WORLD);
227 >    
228 >    MPI_Bcast(AtomsPerProc, mpiPlug->numberProcessors,
229 >              MPI_INT, 0, MPI_COMM_WORLD);
230 >
231 >
232    }
135  
136  if( mpiPlug->myNode == mpiPlug->numberProcessors-1 ){
137      mpiPlug->myMolStart = molIndex;
138      mpiPlug->myAtomStart = atomIndex;
233  
140      nLocal = 0;
141      molLocal = 0;
142      while( compIndex < nComponents ){
143        
144        if( (molIndex-compStart) >= componentsNmol[compIndex] ){
145          compStart = molIndex;
146          compIndex++;
147          continue;
148        }
234  
235 <        nLocal += compStamps[compIndex]->getNAtoms();
236 <        atomIndex += compStamps[compIndex]->getNAtoms();
237 <        molIndex++;
238 <        molLocal++;
239 <      }
240 <      
241 <      mpiPlug->myMolEnd = (molIndex - 1);
157 <      mpiPlug->myAtomEnd = (atomIndex - 1);
158 <      mpiPlug->myNlocal = nLocal;  
159 <      mpiPlug->myMol = molLocal;
235 >  // Let's all check for sanity:
236 >
237 >  nmol_local = 0;
238 >  for (i = 0 ; i < mpiPlug->nMolGlobal; i++ ) {
239 >    if (MolToProcMap[i] == mpiPlug->myNode) {
240 >      nmol_local++;
241 >    }
242    }
243  
244 +  natoms_local = 0;
245 +  for (i = 0; i < mpiPlug->nAtomsGlobal; i++) {
246 +    if (AtomToProcMap[i] == mpiPlug->myNode) {
247 +      natoms_local++;      
248 +    }
249 +  }
250  
251 <  MPI_Allreduce( &nLocal, &testSum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD );
251 >  MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM,
252 >                MPI_COMM_WORLD);
253 >  MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT,
254 >                MPI_SUM, MPI_COMM_WORLD);
255    
256 <  if( mpiPlug->myNode == 0 ){
257 <    if( testSum != entryPlug->n_atoms ){
258 <      sprintf( painCave.errMsg,
259 <               "The summ of all nLocals, %d, did not equal the total number of atoms, %d.\n",
260 <               testSum, entryPlug->n_atoms );
261 <      painCave.isFatal = 1;
262 <      simError();
172 <    }
256 >  if( nmol_global != entryPlug->n_mol ){
257 >    sprintf( painCave.errMsg,
258 >             "The sum of all nmol_local, %d, did not equal the "
259 >             "total number of molecules, %d.\n",
260 >             nmol_global, entryPlug->n_mol );
261 >    painCave.isFatal = 1;
262 >    simError();
263    }
264 +  
265 +  if( natoms_global != entryPlug->n_atoms ){
266 +    sprintf( painCave.errMsg,
267 +             "The sum of all natoms_local, %d, did not equal the "
268 +             "total number of atoms, %d.\n",
269 +             natoms_global, entryPlug->n_atoms );
270 +    painCave.isFatal = 1;
271 +    simError();
272 +  }
273  
274    sprintf( checkPointMsg,
275             "Successfully divided the molecules among the processors.\n" );
276    MPIcheckPoint();
277  
278 <  // lets create the identity array
278 >  mpiPlug->myNMol = nmol_local;
279 >  mpiPlug->myNlocal = natoms_local;
280  
281    globalIndex = new int[mpiPlug->myNlocal];
282 <  index = mpiPlug->myAtomStart;
283 <  for( i=0; i<mpiPlug->myNlocal; i++){
284 <    globalIndex[i] = index;
285 <    index++;
282 >  local_index = 0;
283 >  for (i = 0; i < mpiPlug->nAtomsGlobal; i++) {
284 >    if (AtomToProcMap[i] == mpiPlug->myNode) {
285 >      globalIndex[local_index] = i;
286 >      local_index++;
287 >    }
288    }
289 <
289 >  
290    return globalIndex;
291   }
292  
# Line 194 | Line 296 | void mpiSimulation::mpiRefresh( void ){
296    int isError, i;
297    int *globalIndex = new int[mpiPlug->myNlocal];
298  
299 <  for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex();
299 >  // Fortran indexing needs to be increased by 1 in order to get the 2 languages to
300 >  // not barf
301  
302 +  for(i=0; i<mpiPlug->myNlocal; i++) globalIndex[i] = entryPlug->atoms[i]->getGlobalIndex()+1;
303 +
304    
305    isError = 0;
306    setFsimParallel( mpiPlug, &(entryPlug->n_atoms), globalIndex, &isError );

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines