| 33 |
|
double boxX, double boxY, double boxZ ); |
| 34 |
|
|
| 35 |
|
int buildRandomBilayer( void ); |
| 36 |
– |
int buildLatticeBilayer( int isHexLattice, |
| 37 |
– |
double hexSpacing, |
| 38 |
– |
double aLat, |
| 39 |
– |
double bLat, |
| 40 |
– |
int targetNlipid, |
| 41 |
– |
double targetWaterLipidRatio, |
| 42 |
– |
double leafSpacing); |
| 36 |
|
|
| 44 |
– |
void getRandomRot( double rot[3][3] ); |
| 45 |
– |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ); |
| 46 |
– |
void getUnitRot( double unit[3], double rot[3][3] ); |
| 47 |
– |
|
| 37 |
|
int buildBilayer( int isRandom ){ |
| 38 |
|
|
| 39 |
|
if( isRandom ){ |
| 41 |
|
} |
| 42 |
|
else{ |
| 43 |
|
|
| 44 |
< |
|
| 45 |
< |
|
| 57 |
< |
return buildLatticeBilayer(); |
| 44 |
> |
std::cerr << "unsupported feature\n"; |
| 45 |
> |
return 0; |
| 46 |
|
} |
| 47 |
|
} |
| 48 |
|
|
| 567 |
|
// if( molSeq != NULL ) delete[] molSeq; |
| 568 |
|
// if( simnfo != NULL ) delete simnfo; |
| 569 |
|
// if( writer != NULL ) delete writer; |
| 582 |
– |
|
| 583 |
– |
return 1; |
| 584 |
– |
} |
| 585 |
– |
|
| 586 |
– |
int buildLatticeBilayer(int isHexLattice, |
| 587 |
– |
double hexSpacing, |
| 588 |
– |
double aLat, |
| 589 |
– |
double bLat, |
| 590 |
– |
int targetNlipid, |
| 591 |
– |
double targetWaterLipidRatio, |
| 592 |
– |
double leafSpacing){ |
| 593 |
– |
|
| 594 |
– |
typedef struct{ |
| 595 |
– |
double rot[3][3]; |
| 596 |
– |
double pos[3]; |
| 597 |
– |
} coord; |
| 598 |
– |
|
| 599 |
– |
const double waterRho = 0.0334; // number density per cubic angstrom |
| 600 |
– |
const double waterVol = 4.0 / waterRho; // volume occupied by 4 waters |
| 601 |
– |
|
| 602 |
– |
double waterCell[3]; |
| 603 |
– |
|
| 604 |
– |
double *posX, *posY, *posZ; |
| 605 |
– |
double pos[3], posA[3], posB[3]; |
| 606 |
– |
|
| 607 |
– |
const double waterFudge = 5.0; |
| 608 |
– |
|
| 609 |
– |
int i,j,k,l; |
| 610 |
– |
int nAtoms, atomIndex, molIndex, molID; |
| 611 |
– |
int* molSeq; |
| 612 |
– |
int* molMap; |
| 613 |
– |
int* molStart; |
| 614 |
– |
int testTot, done; |
| 615 |
– |
int nCells, nCellsX, nCellsY, nCellsZ; |
| 616 |
– |
int nx, ny; |
| 617 |
– |
double boxX, boxY, boxZ; |
| 618 |
– |
double unitVector[3]; |
| 619 |
– |
int which; |
| 620 |
– |
int targetWaters; |
| 621 |
– |
|
| 622 |
– |
|
| 623 |
– |
|
| 624 |
– |
coord testSite; |
| 625 |
– |
|
| 626 |
– |
Atom** atoms; |
| 627 |
– |
SimInfo* simnfo; |
| 628 |
– |
SimState* theConfig; |
| 629 |
– |
DumpWriter* writer; |
| 630 |
– |
|
| 631 |
– |
MoleculeStamp* lipidStamp; |
| 632 |
– |
MoleculeStamp* waterStamp; |
| 633 |
– |
MoLocator *lipidLocate; |
| 634 |
– |
MoLocator *waterLocate; |
| 635 |
– |
int foundLipid, foundWater; |
| 636 |
– |
int nLipids, lipidNatoms, nWaters, waterNatoms; |
| 637 |
– |
|
| 638 |
– |
srand48( RAND_SEED ); |
| 639 |
– |
|
| 640 |
– |
// create the simInfo objects |
| 641 |
– |
|
| 642 |
– |
simnfo = new SimInfo; |
| 643 |
– |
|
| 644 |
– |
// set the the lipidStamp |
| 645 |
– |
|
| 646 |
– |
foundLipid = 0; |
| 647 |
– |
foundWater = 0; |
| 648 |
– |
for(i=0; i<bsInfo.nComponents; i++){ |
| 649 |
– |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.lipidName ) ){ |
| 650 |
– |
|
| 651 |
– |
foundLipid = 1; |
| 652 |
– |
lipidStamp = bsInfo.compStamps[i]; |
| 653 |
– |
nLipids = bsInfo.componentsNmol[i]; |
| 654 |
– |
lipidNatoms = lipidStamp->getNAtoms(); |
| 655 |
– |
} |
| 656 |
– |
if( !strcmp( bsInfo.compStamps[i]->getID(), bsInfo.waterName ) ){ |
| 657 |
– |
|
| 658 |
– |
foundWater = 1; |
| 659 |
– |
|
| 660 |
– |
waterStamp = bsInfo.compStamps[i]; |
| 661 |
– |
nWaters = bsInfo.componentsNmol[i]; |
| 662 |
– |
waterNatoms = waterStamp->getNAtoms(); |
| 663 |
– |
} |
| 664 |
– |
} |
| 665 |
– |
if( !foundLipid ){ |
| 666 |
– |
sprintf(painCave.errMsg, |
| 667 |
– |
"Could not find lipid \"%s\" in the bass file.\n", |
| 668 |
– |
bsInfo.lipidName ); |
| 669 |
– |
painCave.isFatal = 1; |
| 670 |
– |
simError(); |
| 671 |
– |
} |
| 672 |
– |
if( !foundWater ){ |
| 673 |
– |
sprintf(painCave.errMsg, |
| 674 |
– |
"Could not find solvent \"%s\" in the bass file.\n", |
| 675 |
– |
bsInfo.waterName ); |
| 676 |
– |
painCave.isFatal = 1; |
| 677 |
– |
simError(); |
| 678 |
– |
} |
| 679 |
– |
|
| 680 |
– |
//create the Molocator arrays |
| 681 |
– |
|
| 682 |
– |
lipidLocate = new MoLocator( lipidStamp ); |
| 683 |
– |
waterLocate = new MoLocator( waterStamp ); |
| 684 |
– |
|
| 685 |
– |
|
| 686 |
– |
// set up the bilayer leaves |
| 687 |
– |
|
| 688 |
– |
if (isHexLattice) { |
| 689 |
– |
aLat = sqrt(3.0)*hexSpacing; |
| 690 |
– |
bLat = hexSpacing; |
| 691 |
– |
} |
| 692 |
– |
|
| 693 |
– |
nCells = (int) sqrt( (double)targetNlipid * bLat / (4.0 * aLat) ); |
| 694 |
– |
|
| 695 |
– |
nx = nCells; |
| 696 |
– |
ny = (int) ((double)nCells * aLat / bLat); |
| 697 |
– |
|
| 698 |
– |
boxX = nx * aLat; |
| 699 |
– |
boxY = ny * bLat; |
| 700 |
– |
|
| 701 |
– |
nLipids = 4 * nx * ny; |
| 702 |
– |
coord* lipidSites = new coord[nLipids]; |
| 703 |
– |
|
| 704 |
– |
unitVector[0] = 0.0; |
| 705 |
– |
unitVector[1] = 0.0; |
| 706 |
– |
|
| 707 |
– |
which = 0; |
| 708 |
– |
|
| 709 |
– |
for (i = 0; i < nx; i++) { |
| 710 |
– |
for (j = 0; j < ny; j++ ) { |
| 711 |
– |
for (k = 0; k < 2; k++) { |
| 712 |
– |
|
| 713 |
– |
lipidSites[which].pos[0] = (double)i * aLat; |
| 714 |
– |
lipidSites[which].pos[1] = (double)j * bLat; |
| 715 |
– |
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
| 716 |
– |
|
| 717 |
– |
unitVector[2] = 2.0 * (double)k - 1.0; |
| 718 |
– |
|
| 719 |
– |
getUnitRot( unitVector, lipidSites[which].rot ); |
| 720 |
– |
|
| 721 |
– |
which++; |
| 722 |
– |
|
| 723 |
– |
lipidSites[which].pos[0] = aLat * ((double)i + 0.5); |
| 724 |
– |
lipidSites[which].pos[1] = bLat * ((double)j + 0.5); |
| 725 |
– |
lipidSites[which].pos[2] = ((double)k - 0.5) * (leafSpacing / 2.0); |
| 726 |
– |
|
| 727 |
– |
unitVector[2] = 2.0 * (double)k - 1.0; |
| 728 |
– |
|
| 729 |
– |
getUnitRot( unitVector, lipidSites[which].rot ); |
| 730 |
– |
|
| 731 |
– |
which++; |
| 732 |
– |
} |
| 733 |
– |
} |
| 734 |
– |
} |
| 735 |
– |
|
| 736 |
– |
targetWaters = targetWaterLipidRatio * nLipids; |
| 570 |
|
|
| 738 |
– |
// guess the size of the water box |
| 739 |
– |
|
| 740 |
– |
|
| 741 |
– |
|
| 742 |
– |
nCellsX = (int)ceil(boxX / pow(waterVol, ( 1.0 / 3.0 )) ); |
| 743 |
– |
nCellsY = (int)ceil(boxY / pow(waterVol, ( 1.0 / 3.0 )) ); |
| 744 |
– |
|
| 745 |
– |
done = 0; |
| 746 |
– |
nCellsZ = 0; |
| 747 |
– |
while( !done ){ |
| 748 |
– |
|
| 749 |
– |
nCellsZ++; |
| 750 |
– |
testTot = 4 * nCellsX * nCellsY * nCellsZ; |
| 751 |
– |
|
| 752 |
– |
if( testTot >= targetWaters ) done = 1; |
| 753 |
– |
} |
| 754 |
– |
|
| 755 |
– |
nWaters = nCellsX * nCellsY * nCellsZ * 4; |
| 756 |
– |
|
| 757 |
– |
coord* waterSites = new coord[nWaters]; |
| 758 |
– |
|
| 759 |
– |
waterCell[0] = boxX / nCellsX; |
| 760 |
– |
waterCell[1] = boxY / nCellsY; |
| 761 |
– |
waterCell[2] = 4.0 / (waterRho * waterCell[0] * waterCell[1]); |
| 762 |
– |
|
| 763 |
– |
Lattice *myORTHO; |
| 764 |
– |
myORTHO = new Lattice( ORTHORHOMBIC_LATTICE_TYPE, waterCell); |
| 765 |
– |
myORTHO->setStartZ( leafSpacing / 2.0 + waterFudge); |
| 766 |
– |
|
| 767 |
– |
boxZ = waterCell[2] * nCellsZ; |
| 768 |
– |
|
| 769 |
– |
// create an fcc lattice in the water box. |
| 770 |
– |
|
| 771 |
– |
which = 0; |
| 772 |
– |
for( i=0; i < nCellsX; i++ ){ |
| 773 |
– |
for( j=0; j < nCellsY; j++ ){ |
| 774 |
– |
for( k=0; k < nCellsZ; k++ ){ |
| 775 |
– |
|
| 776 |
– |
myORTHO->getLatticePoints(&posX, &posY, &posZ, i, j, k); |
| 777 |
– |
for(l=0; l<4; l++){ |
| 778 |
– |
waterSites[which].pos[0] = posX[l]; |
| 779 |
– |
waterSites[which].pos[1] = posY[l]; |
| 780 |
– |
waterSites[which].pos[2] = posZ[l]; |
| 781 |
– |
which++; |
| 782 |
– |
} |
| 783 |
– |
} |
| 784 |
– |
} |
| 785 |
– |
} |
| 786 |
– |
|
| 787 |
– |
// create the real Atom arrays |
| 788 |
– |
|
| 789 |
– |
nAtoms = 0; |
| 790 |
– |
molIndex = 0; |
| 791 |
– |
molStart = new int[nLipids + nWaters]; |
| 792 |
– |
|
| 793 |
– |
for(j=0; j<nLipids; j++){ |
| 794 |
– |
molStart[molIndex] = nAtoms; |
| 795 |
– |
molIndex++; |
| 796 |
– |
nAtoms += lipidNatoms; |
| 797 |
– |
} |
| 798 |
– |
|
| 799 |
– |
for(j=0; j<nWaters; j++){ |
| 800 |
– |
molStart[molIndex] = nAtoms; |
| 801 |
– |
molIndex++; |
| 802 |
– |
nAtoms += waterNatoms; |
| 803 |
– |
} |
| 804 |
– |
|
| 805 |
– |
theConfig = simnfo->getConfiguration(); |
| 806 |
– |
theConfig->createArrays( nAtoms ); |
| 807 |
– |
simnfo->atoms = new Atom*[nAtoms]; |
| 808 |
– |
atoms = simnfo->atoms; |
| 809 |
– |
|
| 810 |
– |
// initialize lipid positions |
| 811 |
– |
|
| 812 |
– |
molIndex = 0; |
| 813 |
– |
for(i=0; i<nLipids; i++ ){ |
| 814 |
– |
lipidLocate->placeMol( lipidSites[i].pos, lipidSites[i].rot, atoms, |
| 815 |
– |
molStart[molIndex], theConfig ); |
| 816 |
– |
molIndex++; |
| 817 |
– |
} |
| 818 |
– |
|
| 819 |
– |
// initialize the water positions |
| 820 |
– |
|
| 821 |
– |
for(i=0; i<nWaters; i++){ |
| 822 |
– |
|
| 823 |
– |
getRandomRot( waterSites[i].rot ); |
| 824 |
– |
waterLocate->placeMol( waterSites[i].pos, waterSites[i].rot, atoms, |
| 825 |
– |
molStart[molIndex], theConfig ); |
| 826 |
– |
molIndex++; |
| 827 |
– |
} |
| 828 |
– |
|
| 829 |
– |
// set up the SimInfo object |
| 830 |
– |
|
| 831 |
– |
double Hmat[3][3]; |
| 832 |
– |
|
| 833 |
– |
Hmat[0][0] = boxX; |
| 834 |
– |
Hmat[0][1] = 0.0; |
| 835 |
– |
Hmat[0][2] = 0.0; |
| 836 |
– |
|
| 837 |
– |
Hmat[1][0] = 0.0; |
| 838 |
– |
Hmat[1][1] = boxY; |
| 839 |
– |
Hmat[1][2] = 0.0; |
| 840 |
– |
|
| 841 |
– |
Hmat[2][0] = 0.0; |
| 842 |
– |
Hmat[2][1] = 0.0; |
| 843 |
– |
Hmat[2][2] = boxZ; |
| 844 |
– |
|
| 845 |
– |
|
| 846 |
– |
bsInfo.boxX = boxX; |
| 847 |
– |
bsInfo.boxY = boxY; |
| 848 |
– |
bsInfo.boxZ = boxZ; |
| 849 |
– |
|
| 850 |
– |
simnfo->setBoxM( Hmat ); |
| 851 |
– |
|
| 852 |
– |
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
| 853 |
– |
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
| 854 |
– |
|
| 855 |
– |
// set up the writer and write out |
| 856 |
– |
|
| 857 |
– |
writer = new DumpWriter( simnfo ); |
| 858 |
– |
writer->writeFinal( 0.0 ); |
| 859 |
– |
|
| 571 |
|
return 1; |
| 572 |
|
} |
| 573 |
|
|
| 863 |
– |
|
| 864 |
– |
void getRandomRot( double rot[3][3] ){ |
| 865 |
– |
|
| 866 |
– |
double theta, phi, psi; |
| 867 |
– |
double cosTheta; |
| 868 |
– |
|
| 869 |
– |
// select random phi, psi, and cosTheta |
| 870 |
– |
|
| 871 |
– |
phi = 2.0 * M_PI * drand48(); |
| 872 |
– |
psi = 2.0 * M_PI * drand48(); |
| 873 |
– |
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
| 874 |
– |
|
| 875 |
– |
theta = acos( cosTheta ); |
| 876 |
– |
|
| 877 |
– |
getEulerRot( theta, phi, psi, rot ); |
| 878 |
– |
} |
| 879 |
– |
|
| 880 |
– |
|
| 881 |
– |
void getEulerRot( double theta, double phi, double psi, double rot[3][3] ){ |
| 882 |
– |
|
| 883 |
– |
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
| 884 |
– |
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
| 885 |
– |
rot[0][2] = sin(theta) * sin(psi); |
| 886 |
– |
|
| 887 |
– |
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
| 888 |
– |
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
| 889 |
– |
rot[1][2] = sin(theta) * cos(psi); |
| 890 |
– |
|
| 891 |
– |
rot[2][0] = sin(phi) * sin(theta); |
| 892 |
– |
rot[2][1] = -cos(phi) * sin(theta); |
| 893 |
– |
rot[2][2] = cos(theta); |
| 894 |
– |
} |
| 895 |
– |
|
| 896 |
– |
|
| 897 |
– |
void getUnitRot( double u[3], double rot[3][3] ){ |
| 898 |
– |
|
| 899 |
– |
double theta, phi, psi; |
| 900 |
– |
|
| 901 |
– |
theta = acos(u[2]); |
| 902 |
– |
phi = atan(u[1] / u[0]); |
| 903 |
– |
psi = 0.0; |
| 904 |
– |
|
| 905 |
– |
getEulerRot( theta, phi, psi, rot ); |
| 906 |
– |
} |
| 907 |
– |
|
| 908 |
– |
|
| 909 |
– |
|
| 574 |
|
void buildMap( double &x, double &y, double &z, |
| 575 |
|
double boxX, double boxY, double boxZ ){ |
| 576 |
|
|