ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE_old/src/mdtools/libmdCode/calc_reaction_field.F90
(Generate patch)

Comparing trunk/OOPSE_old/src/mdtools/libmdCode/calc_reaction_field.F90 (file contents):
Revision 307 by chuckv, Mon Mar 10 19:37:48 2003 UTC vs.
Revision 329 by gezelter, Wed Mar 12 22:27:59 2003 UTC

# Line 1 | Line 1
1 < subroutine accumulate_rf(atom1, atom2, rij)
1 > module reaction_field
2 >  use simulation
3 >  use definitions
4 >  use atype_module
5 >  use vector_class
6 > #ifdef IS_MPI
7 >  use mpiSimulation
8 > #endif
9 >  implicit none
10  
11 <  include 'sizes.inc'
4 <  include 'simulation.inc'
11 > contains
12  
13 <  integer atom1, atom2
7 <  double precision taper, rij
13 >  subroutine accumulate_rf(atom1, atom2, rij, u_l)
14  
15 <  if (rij.le.rrf) then
16 <        
17 <     if (rij.lt.rt) then
12 <        taper = 1.0d0
13 <     else
14 <        taper = (rrf + 2.0d0*rij - 3.0d0*rt)*(rrf-rij)**2/ ((rrf-rt)**3)
15 <     endif
16 <    
17 <     rflx(atom1) = rflx(atom1) + ulx(atom2)*mu(atom2)*taper
18 <     rfly(atom1) = rfly(atom1) + uly(atom2)*mu(atom2)*taper
19 <     rflz(atom1) = rflz(atom1) + ulz(atom2)*mu(atom2)*taper
20 <    
21 <     rflx(atom2) = rflx(atom2) + ulx(atom1)*mu(atom1)*taper
22 <     rfly(atom2) = rfly(atom2) + uly(atom1)*mu(atom1)*taper
23 <     rflz(atom2) = rflz(atom2) + ulz(atom1)*mu(atom1)*taper
15 >    integer, intent(in) :: atom1, atom2
16 >    real (kind = dp), intent(in) :: rij
17 >    real (kind = dp), dimension(3, getNlocal()) :: u_l    
18  
19 <  endif
20 <  return
21 <  
22 < end subroutine accumulate_rf
19 >    integer :: me1, me2
20 >    real (kind = dp) :: rrf, rt, taper, mu1, mu2
21 >    real (kind = dp), dimension(3) :: ul1
22 >    real (kind = dp), dimension(3) :: ul2
23 >    
24 >    rrf = getRrf()
25 >    
26 >    if (rij.le.rrf) then
27 >      
28 >       rt = getRt()
29 >      
30 >       if (rij.lt.rt) then
31 >          taper = 1.0d0
32 >       else
33 >          taper = (rrf + 2.0d0*rij - 3.0d0*rt)*(rrf-rij)**2/ ((rrf-rt)**3)
34 >       endif
35 >      
36 > #ifdef IS_MPI
37 >       me1 = atid_Row(atom1)
38 >       ul1(1) = u_l_Row(1,atom1)
39 >       ul1(2) = u_l_Row(2,atom1)
40 >       ul1(3) = u_l_Row(3,atom1)
41 >      
42 >       me2 = atid_Col(atom2)
43 >       ul2(1) = u_l_Col(1,atom2)
44 >       ul2(2) = u_l_Col(2,atom2)
45 >       ul2(3) = u_l_Col(3,atom2)
46 > #else
47 >       me1 = atid(atom1)
48 >       ul1(1) = u_l(1,atom1)
49 >       ul1(2) = u_l(2,atom1)
50 >       ul1(3) = u_l(3,atom1)
51 >      
52 >       me2 = atid(atom2)
53 >       ul2(1) = u_l(1,atom2)
54 >       ul2(2) = u_l(2,atom2)
55 >       ul2(3) = u_l(3,atom2)
56 > #endif
57 >      
58 >       call getElementProperty(atypes, me1, "dipole_moment", mu1)
59 >       call getElementProperty(atypes, me2, "dipole_moment", mu2)
60 >      
61 >      
62 > #ifdef IS_MPI
63 >       rf_Row(1,atom1) = rf_Row(1,atom1) + ul2(1)*mu2*taper
64 >       rf_Row(2,atom1) = rf_Row(2,atom1) + ul2(2)*mu2*taper
65 >       rf_Row(3,atom1) = rf_Row(3,atom1) + ul2(3)*mu2*taper
66 >      
67 >       rf_Col(1,atom2) = rf_Col(1,atom2) + ul1(1)*mu2*taper
68 >       rf_Col(2,atom2) = rf_Col(2,atom2) + ul1(2)*mu2*taper
69 >       rf_Col(3,atom2) = rf_Col(3,atom2) + ul1(3)*mu2*taper
70 > #else
71 >       rf(1,atom1) = rf(1,atom1) + ul2(1)*mu2*taper
72 >       rf(2,atom1) = rf(2,atom1) + ul2(2)*mu2*taper
73 >       rf(3,atom1) = rf(3,atom1) + ul2(3)*mu2*taper
74 >      
75 >       rf(1,atom2) = rf(1,atom2) + ul1(1)*mu2*taper
76 >       rf(2,atom2) = rf(2,atom2) + ul1(2)*mu2*taper
77 >       rf(3,atom2) = rf(3,atom2) + ul1(3)*mu2*taper    
78 > #endif
79 >      
80 >    endif
81 >    return  
82 >  end subroutine accumulate_rf
83  
84 < subroutine accumulate_self_rf()
85 <
86 <  include 'sizes.inc'
87 <  include 'simulation.inc'
88 <
89 <  integer i, ia, a1, atype1
90 <  logical is_dipole_atype
91 <  external is_dipole_atype
92 <
93 <  do i = 1, nmol
40 <     do ia = 1, na(i)
41 <        a1 = atom_index(i,ia)
42 <
43 <        atype1 = atype(a1)
84 >  subroutine accumulate_self_rf(atom1, mu1, u_l)
85 >    
86 >    integer, intent(in) :: atom1
87 >    real(kind=dp), intent(in) :: mu1
88 >    real(kind=dp), dimension(3,getNlocal()) :: u_l
89 >    
90 >    !! should work for both MPI and non-MPI version since this is not pairwise.
91 >    rf(1,atom1) = rf(1,atom1) + u_l(1,atom1)*mu1
92 >    rf(2,atom1) = rf(2,atom1) + u_l(2,atom1)*mu1
93 >    rf(3,atom1) = rf(3,atom1) + u_l(3,atom1)*mu1
94          
95 <        if (is_dipole_atype(atype1)) then
96 <
47 <           rflx(a1) = rflx(a1) + ulx(a1)*mu(a1)
48 <           rfly(a1) = rfly(a1) + uly(a1)*mu(a1)
49 <           rflz(a1) = rflz(a1) + ulz(a1)*mu(a1)
50 <
51 <        endif
52 <     enddo
53 <  enddo
54 <
55 <  return
56 < end subroutine accumulate_self_rf
57 <
58 < subroutine reaction_field(pot)
95 >    return
96 >  end subroutine accumulate_self_rf
97    
98 <  include 'sizes.inc'
99 <  include 'simulation.inc'
98 >  subroutine reaction_field(a1, mu1, u_l, rfpot, t, do_pot)
99 >            
100 >    ! compute torques on dipoles:
101 >    ! pre converts from mu in units of debye to kcal/mol
102 >    
103 >    rrf = getRrf()
104 >    dielect = getDielect()
105 >    rrfsq = rrf * rrf
106 >    pre = 14.38362d0*2.0d0*(dielect-1.0d0)/((2.0d0*dielect+1.0d0)*rrfsq*rrf)
107 >    
108 >    ! The torque contribution is dipole cross reaction_field
109 >    
110 >    t(1,a1) = t(1,a1) + pre*mu1*(u_l(2,a1)*rf(3,a1) - u_l(3,a1)*rf(2,a1))
111 >    t(2,a1) = t(2,a1) + pre*mu1*(u_l(3,a1)*rf(1,a1) - u_l(1,a1)*rf(3,a1))
112 >    t(3,a1) = t(3,a1) + pre*mu1*(u_l(1,a1)*rf(2,a1) - u_l(2,a1)*rf(1,a1))
113 >    
114 >    ! the potential contribution is -1/2 dipole dot reaction_field
115 >    
116 >    if (do_pot) then
117 >       rfpot = rfpot - 0.5d0 * pre * mu1 * &
118 >            (rf(1,a1)*u_l(1,a1) + rf(2,a1)*u_l(2,a1) + rf(3,a1)*u_l(3,a1))
119 >    endif
120 >    
121 >    return
122 >  end subroutine reaction_field
123    
124 <  double precision rrfsq, pre
64 <  integer i, ia, a1, atype1
65 <  logical is_dipole_atype
66 <  external is_dipole_atype
67 <
68 <  ! do single loop to compute torques on dipoles:
69 <  ! pre converts from mu in units of debye to kcal/mol
70 <
71 <  rrfsq = rrf * rrf
72 <  pre = 14.38362d0*2.0d0*(dielect-1.0d0)/((2.0d0*dielect+1.0d0)*rrfsq*rrf)
73 <  
74 <  do i = 1, nmol
75 <     do ia = 1, na(i)
76 <        a1 = atom_index(i,ia)
77 <
78 <        atype1 = atype(a1)
79 <        
80 <        if (is_dipole_atype(atype1)) then
81 <
82 <           ! The torque contribution is dipole cross reaction_field
83 <
84 <           tlx(a1) = tlx(a1) + pre*mu(a1)*(uly(a1)*rflz(a1) - ulz(a1)*rfly(a1))
85 <           tly(a1) = tly(a1) + pre*mu(a1)*(ulz(a1)*rflx(a1) - ulx(a1)*rflz(a1))
86 <           tlz(a1) = tlz(a1) + pre*mu(a1)*(ulx(a1)*rfly(a1) - uly(a1)*rflx(a1))
87 <
88 <           ! the potential contribution is -1/2 dipole dot reaction_field
89 <          
90 <           pot = pot - 0.5d0 * pre * mu(a1) * &
91 <                (rflx(a1)*ulx(a1) + rfly(a1)*uly(a1) + rflz(a1)*ulz(a1))
92 <
93 <        endif
94 <        
95 <     enddo
96 <  enddo
97 <
98 < end subroutine reaction_field
99 <
100 < subroutine rf_correct_forces(atom1, atom2, dx, dy, dz, rij)
101 <  include 'sizes.inc'
102 <  include 'simulation.inc'
103 <
104 <  integer atom1, atom2
105 <  double precision dtdr, rrfsq, prerf, rij
106 <  double precision dudx, dudy, dudz, u1dotu2, dx, dy, dz
107 <
108 <  rrfsq = rrf * rrf
109 <  prerf = 14.38362d0*2.0d0*(dielect-1.0d0)/((2.0d0*dielect+1.0d0)*rrfsq*rrf)
110 <  
111 <  if (rij.le.rrf) then
112 <
113 <     ! cubic taper
114 <     if (rij.lt.rt) then
115 <        dtdr = 0.0d0
116 <     else
117 <        dtdr = 6.0d0*(rij*rij - rij*rt - rij*rrf +rrf*rt)/((rrf-rt)**3)
118 <     endif
119 <
120 <     u1dotu2 = ulx(atom1)*ulx(atom2) + uly(atom1)*uly(atom2) + &
121 <          ulz(atom1)*ulz(atom2)
122 <
123 <     dudx = - prerf*mu(atom1)*mu(atom2)*u1dotu2*dtdr*dx/rij
124 <     dudy = - prerf*mu(atom1)*mu(atom2)*u1dotu2*dtdr*dy/rij
125 <     dudz = - prerf*mu(atom1)*mu(atom2)*u1dotu2*dtdr*dz/rij
126 <
127 <     flx(atom1) = flx(atom1) + dudx
128 <     fly(atom1) = fly(atom1) + dudy
129 <     flz(atom1) = flz(atom1) + dudz
124 >  subroutine rf_correct_forces(atom1, atom2, d, rij, u_l, f, do_stress)
125      
126 <     flx(atom2) = flx(atom2) - dudx
127 <     fly(atom2) = fly(atom2) - dudy
128 <     flz(atom2) = flz(atom2) - dudz
129 <
130 <     ! add contribution to the virial as well
131 <     virial = virial + ( dx*dudx + dy*dudy + dz*dudz )
132 <
133 <  endif
134 <
135 <  return
136 < end subroutine rf_correct_forces
126 >    integer, intent(in) :: atom1, atom2
127 >    real(kind=dp), dimension(3), intent(in) :: d
128 >    real(kind=dp), intent(in) :: rij
129 >    real( kind = dp ), dimension(3,getNlocal()) :: u_l
130 >    real( kind = dp ), dimension(3,getNlocal()) :: f
131 >    logical, intent(in) :: do_stress
132 >    
133 >    real (kind = dp), dimension(3) :: ul1
134 >    real (kind = dp), dimension(3) :: ul2
135 >    real (kind = dp) :: dtdr, rrfsq, prerf
136 >    real (kind = dp) :: dudx, dudy, dudz, u1dotu2
137 >    
138 >    rrf = getRrf()
139 >    
140 >    if (rij.le.rrf) then
141 >      
142 >       rrfsq = rrf * rrf
143 >       dielect = getDielect()    
144 >       prerf = 14.38362d0*2.0d0*(dielect-1.0d0)/((2.0d0*dielect+1.0d0)*rrfsq*rrf)
145 >       rt = getRt()        
146 >      
147 >       if (rij.lt.rt) then
148 >          dtdr = 0.0d0
149 >       else
150 >          dtdr = 6.0d0*(rij*rij - rij*rt - rij*rrf +rrf*rt)/((rrf-rt)**3)
151 >       endif
152 >      
153 > #ifdef IS_MPI
154 >       me1 = atid_Row(atom1)
155 >       ul1(1) = u_l_Row(1,atom1)
156 >       ul1(2) = u_l_Row(2,atom1)
157 >       ul1(3) = u_l_Row(3,atom1)
158 >      
159 >       me2 = atid_Col(atom2)
160 >       ul2(1) = u_l_Col(1,atom2)
161 >       ul2(2) = u_l_Col(2,atom2)
162 >       ul2(3) = u_l_Col(3,atom2)
163 > #else
164 >       me1 = atid(atom1)
165 >       ul1(1) = u_l(1,atom1)
166 >       ul1(2) = u_l(2,atom1)
167 >       ul1(3) = u_l(3,atom1)
168 >      
169 >       me2 = atid(atom2)
170 >       ul2(1) = u_l(1,atom2)
171 >       ul2(2) = u_l(2,atom2)
172 >       ul2(3) = u_l(3,atom2)
173 > #endif
174 >      
175 >       call getElementProperty(atypes, me1, "dipole_moment", mu1)
176 >       call getElementProperty(atypes, me2, "dipole_moment", mu2)
177 >      
178 >       u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) + ul1(3)*ul2(3)
179 >      
180 >       dudx = - prerf*mu1*mu2*u1dotu2*dtdr*d(1)/rij
181 >       dudy = - prerf*mu1*mu2*u1dotu2*dtdr*d(2)/rij
182 >       dudz = - prerf*mu1*mu2*u1dotu2*dtdr*d(3)/rij
183 >      
184 > #ifdef IS_MPI
185 >       f_Row(1,atom1) = f_Row(1,atom1) + dudx
186 >       f_Row(2,atom1) = f_Row(2,atom1) + dudy
187 >       f_Row(3,atom1) = f_Row(3,atom1) + dudz
188 >      
189 >       f_Col(1,atom2) = f_Col(1,atom2) - dudx
190 >       f_Col(2,atom2) = f_Col(2,atom2) - dudy
191 >       f_Col(3,atom2) = f_Col(3,atom2) - dudz
192 > #else
193 >       f(1,atom1) = f(1,atom1) + dudx
194 >       f(2,atom1) = f(2,atom1) + dudy
195 >       f(3,atom1) = f(3,atom1) + dudz
196 >      
197 >       f(1,atom2) = f(1,atom2) - dudx
198 >       f(2,atom2) = f(2,atom2) - dudy
199 >       f(3,atom2) = f(3,atom2) - dudz
200 > #endif
201 >      
202 >       if (do_stress) then          
203 >          tau_Temp(1) = tau_Temp(1) + dudx * d(1)
204 >          tau_Temp(2) = tau_Temp(2) + dudx * d(2)
205 >          tau_Temp(3) = tau_Temp(3) + dudx * d(3)
206 >          tau_Temp(4) = tau_Temp(4) + dudy * d(1)
207 >          tau_Temp(5) = tau_Temp(5) + dudy * d(2)
208 >          tau_Temp(6) = tau_Temp(6) + dudy * d(3)
209 >          tau_Temp(7) = tau_Temp(7) + dudz * d(1)
210 >          tau_Temp(8) = tau_Temp(8) + dudz * d(2)
211 >          tau_Temp(9) = tau_Temp(9) + dudz * d(3)
212 >          virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
213 >       endif
214 >      
215 >    endif
216 >    
217 >    return
218 >  end subroutine rf_correct_forces
219 > end module reaction_field

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines